Metamath Proof Explorer


Theorem rgen2w

Description: Generalization rule for restricted quantification. Note that x and y needn't be distinct. (Contributed by NM, 18-Jun-2014)

Ref Expression
Hypothesis rgenw.1
|- ph
Assertion rgen2w
|- A. x e. A A. y e. B ph

Proof

Step Hyp Ref Expression
1 rgenw.1
 |-  ph
2 1 rgenw
 |-  A. y e. B ph
3 2 rgenw
 |-  A. x e. A A. y e. B ph