Description: The class of 0-regular graphs is a proper class. (Contributed by AV, 27-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rgrprc | |- { g | g RegGraph 0 } e/ _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rusgrrgr | |- ( g RegUSGraph 0 -> g RegGraph 0 ) |
|
| 2 | 1 | ss2abi | |- { g | g RegUSGraph 0 } C_ { g | g RegGraph 0 } |
| 3 | rusgrprc | |- { g | g RegUSGraph 0 } e/ _V |
|
| 4 | prcssprc | |- ( ( { g | g RegUSGraph 0 } C_ { g | g RegGraph 0 } /\ { g | g RegUSGraph 0 } e/ _V ) -> { g | g RegGraph 0 } e/ _V ) |
|
| 5 | 2 3 4 | mp2an | |- { g | g RegGraph 0 } e/ _V |