Metamath Proof Explorer


Theorem rgrprc

Description: The class of 0-regular graphs is a proper class. (Contributed by AV, 27-Dec-2020)

Ref Expression
Assertion rgrprc
|- { g | g RegGraph 0 } e/ _V

Proof

Step Hyp Ref Expression
1 rusgrrgr
 |-  ( g RegUSGraph 0 -> g RegGraph 0 )
2 1 ss2abi
 |-  { g | g RegUSGraph 0 } C_ { g | g RegGraph 0 }
3 rusgrprc
 |-  { g | g RegUSGraph 0 } e/ _V
4 prcssprc
 |-  ( ( { g | g RegUSGraph 0 } C_ { g | g RegGraph 0 } /\ { g | g RegUSGraph 0 } e/ _V ) -> { g | g RegGraph 0 } e/ _V )
5 2 3 4 mp2an
 |-  { g | g RegGraph 0 } e/ _V