| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rgrprc |
|- { g | g RegGraph 0 } e/ _V |
| 2 |
|
0xnn0 |
|- 0 e. NN0* |
| 3 |
|
vex |
|- g e. _V |
| 4 |
|
eqid |
|- ( Vtx ` g ) = ( Vtx ` g ) |
| 5 |
|
eqid |
|- ( VtxDeg ` g ) = ( VtxDeg ` g ) |
| 6 |
4 5
|
isrgr |
|- ( ( g e. _V /\ 0 e. NN0* ) -> ( g RegGraph 0 <-> ( 0 e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) ) ) |
| 7 |
3 2 6
|
mp2an |
|- ( g RegGraph 0 <-> ( 0 e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) ) |
| 8 |
2 7
|
mpbiran |
|- ( g RegGraph 0 <-> A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) |
| 9 |
8
|
bicomi |
|- ( A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 <-> g RegGraph 0 ) |
| 10 |
9
|
abbii |
|- { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } = { g | g RegGraph 0 } |
| 11 |
|
neleq1 |
|- ( { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } = { g | g RegGraph 0 } -> ( { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e/ _V <-> { g | g RegGraph 0 } e/ _V ) ) |
| 12 |
10 11
|
ax-mp |
|- ( { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e/ _V <-> { g | g RegGraph 0 } e/ _V ) |
| 13 |
1 12
|
mpbir |
|- { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e/ _V |