Metamath Proof Explorer


Theorem rgrx0nd

Description: The potentially alternatively defined k-regular graphs is not defined for k=0. (Contributed by AV, 28-Dec-2020)

Ref Expression
Hypothesis rgrx0ndm.u
|- R = ( k e. NN0* |-> { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k } )
Assertion rgrx0nd
|- ( R ` 0 ) = (/)

Proof

Step Hyp Ref Expression
1 rgrx0ndm.u
 |-  R = ( k e. NN0* |-> { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k } )
2 1 rgrx0ndm
 |-  0 e/ dom R
3 2 neli
 |-  -. 0 e. dom R
4 ndmfv
 |-  ( -. 0 e. dom R -> ( R ` 0 ) = (/) )
5 3 4 ax-mp
 |-  ( R ` 0 ) = (/)