Metamath Proof Explorer


Theorem rgrx0ndm

Description: 0 is not in the domain of the potentially alternative definition of the sets of k-regular graphs for each extended nonnegative integer k. (Contributed by AV, 28-Dec-2020)

Ref Expression
Hypothesis rgrx0ndm.u
|- R = ( k e. NN0* |-> { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k } )
Assertion rgrx0ndm
|- 0 e/ dom R

Proof

Step Hyp Ref Expression
1 rgrx0ndm.u
 |-  R = ( k e. NN0* |-> { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k } )
2 rgrprcx
 |-  { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e/ _V
3 2 neli
 |-  -. { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e. _V
4 3 intnan
 |-  -. ( 0 e. NN0* /\ { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e. _V )
5 df-nel
 |-  ( 0 e/ dom R <-> -. 0 e. dom R )
6 eqeq2
 |-  ( k = 0 -> ( ( ( VtxDeg ` g ) ` v ) = k <-> ( ( VtxDeg ` g ) ` v ) = 0 ) )
7 6 ralbidv
 |-  ( k = 0 -> ( A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k <-> A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) )
8 7 abbidv
 |-  ( k = 0 -> { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k } = { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } )
9 8 eleq1d
 |-  ( k = 0 -> ( { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k } e. _V <-> { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e. _V ) )
10 1 dmmpt
 |-  dom R = { k e. NN0* | { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k } e. _V }
11 9 10 elrab2
 |-  ( 0 e. dom R <-> ( 0 e. NN0* /\ { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e. _V ) )
12 5 11 xchbinx
 |-  ( 0 e/ dom R <-> -. ( 0 e. NN0* /\ { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e. _V ) )
13 4 12 mpbir
 |-  0 e/ dom R