Step |
Hyp |
Ref |
Expression |
1 |
|
rgrx0ndm.u |
|- R = ( k e. NN0* |-> { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k } ) |
2 |
|
rgrprcx |
|- { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e/ _V |
3 |
2
|
neli |
|- -. { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e. _V |
4 |
3
|
intnan |
|- -. ( 0 e. NN0* /\ { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e. _V ) |
5 |
|
df-nel |
|- ( 0 e/ dom R <-> -. 0 e. dom R ) |
6 |
|
eqeq2 |
|- ( k = 0 -> ( ( ( VtxDeg ` g ) ` v ) = k <-> ( ( VtxDeg ` g ) ` v ) = 0 ) ) |
7 |
6
|
ralbidv |
|- ( k = 0 -> ( A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k <-> A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) ) |
8 |
7
|
abbidv |
|- ( k = 0 -> { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k } = { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } ) |
9 |
8
|
eleq1d |
|- ( k = 0 -> ( { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k } e. _V <-> { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e. _V ) ) |
10 |
1
|
dmmpt |
|- dom R = { k e. NN0* | { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k } e. _V } |
11 |
9 10
|
elrab2 |
|- ( 0 e. dom R <-> ( 0 e. NN0* /\ { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e. _V ) ) |
12 |
5 11
|
xchbinx |
|- ( 0 e/ dom R <-> -. ( 0 e. NN0* /\ { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e. _V ) ) |
13 |
4 12
|
mpbir |
|- 0 e/ dom R |