| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhm1.o |
|- .1. = ( 1r ` R ) |
| 2 |
|
rhm1.n |
|- N = ( 1r ` S ) |
| 3 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 4 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
| 5 |
3 4
|
rhmmhm |
|- ( F e. ( R RingHom S ) -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) |
| 6 |
|
eqid |
|- ( 0g ` ( mulGrp ` R ) ) = ( 0g ` ( mulGrp ` R ) ) |
| 7 |
|
eqid |
|- ( 0g ` ( mulGrp ` S ) ) = ( 0g ` ( mulGrp ` S ) ) |
| 8 |
6 7
|
mhm0 |
|- ( F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) -> ( F ` ( 0g ` ( mulGrp ` R ) ) ) = ( 0g ` ( mulGrp ` S ) ) ) |
| 9 |
5 8
|
syl |
|- ( F e. ( R RingHom S ) -> ( F ` ( 0g ` ( mulGrp ` R ) ) ) = ( 0g ` ( mulGrp ` S ) ) ) |
| 10 |
3 1
|
ringidval |
|- .1. = ( 0g ` ( mulGrp ` R ) ) |
| 11 |
10
|
fveq2i |
|- ( F ` .1. ) = ( F ` ( 0g ` ( mulGrp ` R ) ) ) |
| 12 |
4 2
|
ringidval |
|- N = ( 0g ` ( mulGrp ` S ) ) |
| 13 |
9 11 12
|
3eqtr4g |
|- ( F e. ( R RingHom S ) -> ( F ` .1. ) = N ) |