| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmrcl2 |  |-  ( F e. ( T RingHom U ) -> U e. Ring ) | 
						
							| 2 |  | rhmrcl1 |  |-  ( G e. ( S RingHom T ) -> S e. Ring ) | 
						
							| 3 | 1 2 | anim12ci |  |-  ( ( F e. ( T RingHom U ) /\ G e. ( S RingHom T ) ) -> ( S e. Ring /\ U e. Ring ) ) | 
						
							| 4 |  | rhmghm |  |-  ( F e. ( T RingHom U ) -> F e. ( T GrpHom U ) ) | 
						
							| 5 |  | rhmghm |  |-  ( G e. ( S RingHom T ) -> G e. ( S GrpHom T ) ) | 
						
							| 6 |  | ghmco |  |-  ( ( F e. ( T GrpHom U ) /\ G e. ( S GrpHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) | 
						
							| 7 | 4 5 6 | syl2an |  |-  ( ( F e. ( T RingHom U ) /\ G e. ( S RingHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) | 
						
							| 8 |  | eqid |  |-  ( mulGrp ` T ) = ( mulGrp ` T ) | 
						
							| 9 |  | eqid |  |-  ( mulGrp ` U ) = ( mulGrp ` U ) | 
						
							| 10 | 8 9 | rhmmhm |  |-  ( F e. ( T RingHom U ) -> F e. ( ( mulGrp ` T ) MndHom ( mulGrp ` U ) ) ) | 
						
							| 11 |  | eqid |  |-  ( mulGrp ` S ) = ( mulGrp ` S ) | 
						
							| 12 | 11 8 | rhmmhm |  |-  ( G e. ( S RingHom T ) -> G e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) | 
						
							| 13 |  | mhmco |  |-  ( ( F e. ( ( mulGrp ` T ) MndHom ( mulGrp ` U ) ) /\ G e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) -> ( F o. G ) e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) | 
						
							| 14 | 10 12 13 | syl2an |  |-  ( ( F e. ( T RingHom U ) /\ G e. ( S RingHom T ) ) -> ( F o. G ) e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) | 
						
							| 15 | 7 14 | jca |  |-  ( ( F e. ( T RingHom U ) /\ G e. ( S RingHom T ) ) -> ( ( F o. G ) e. ( S GrpHom U ) /\ ( F o. G ) e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) | 
						
							| 16 | 11 9 | isrhm |  |-  ( ( F o. G ) e. ( S RingHom U ) <-> ( ( S e. Ring /\ U e. Ring ) /\ ( ( F o. G ) e. ( S GrpHom U ) /\ ( F o. G ) e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) ) | 
						
							| 17 | 3 15 16 | sylanbrc |  |-  ( ( F e. ( T RingHom U ) /\ G e. ( S RingHom T ) ) -> ( F o. G ) e. ( S RingHom U ) ) |