| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmdvdsr.x |
|- X = ( Base ` R ) |
| 2 |
|
rhmdvdsr.m |
|- .|| = ( ||r ` R ) |
| 3 |
|
rhmdvdsr.n |
|- ./ = ( ||r ` S ) |
| 4 |
|
simpl1 |
|- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> F e. ( R RingHom S ) ) |
| 5 |
|
simpl2 |
|- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> A e. X ) |
| 6 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 7 |
1 6
|
rhmf |
|- ( F e. ( R RingHom S ) -> F : X --> ( Base ` S ) ) |
| 8 |
7
|
ffvelcdmda |
|- ( ( F e. ( R RingHom S ) /\ A e. X ) -> ( F ` A ) e. ( Base ` S ) ) |
| 9 |
4 5 8
|
syl2anc |
|- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> ( F ` A ) e. ( Base ` S ) ) |
| 10 |
|
simpll1 |
|- ( ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) /\ c e. X ) -> F e. ( R RingHom S ) ) |
| 11 |
|
simpr |
|- ( ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) /\ c e. X ) -> c e. X ) |
| 12 |
7
|
ffvelcdmda |
|- ( ( F e. ( R RingHom S ) /\ c e. X ) -> ( F ` c ) e. ( Base ` S ) ) |
| 13 |
10 11 12
|
syl2anc |
|- ( ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) /\ c e. X ) -> ( F ` c ) e. ( Base ` S ) ) |
| 14 |
13
|
ralrimiva |
|- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> A. c e. X ( F ` c ) e. ( Base ` S ) ) |
| 15 |
5
|
adantr |
|- ( ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) /\ c e. X ) -> A e. X ) |
| 16 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 17 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 18 |
1 16 17
|
rhmmul |
|- ( ( F e. ( R RingHom S ) /\ c e. X /\ A e. X ) -> ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) ) |
| 19 |
10 11 15 18
|
syl3anc |
|- ( ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) /\ c e. X ) -> ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) ) |
| 20 |
19
|
ralrimiva |
|- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> A. c e. X ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) ) |
| 21 |
|
simpr |
|- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> A .|| B ) |
| 22 |
1 2 16
|
dvdsr2 |
|- ( A e. X -> ( A .|| B <-> E. c e. X ( c ( .r ` R ) A ) = B ) ) |
| 23 |
22
|
biimpac |
|- ( ( A .|| B /\ A e. X ) -> E. c e. X ( c ( .r ` R ) A ) = B ) |
| 24 |
21 5 23
|
syl2anc |
|- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> E. c e. X ( c ( .r ` R ) A ) = B ) |
| 25 |
|
r19.29 |
|- ( ( A. c e. X ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) /\ E. c e. X ( c ( .r ` R ) A ) = B ) -> E. c e. X ( ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) /\ ( c ( .r ` R ) A ) = B ) ) |
| 26 |
|
simpl |
|- ( ( ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) /\ ( c ( .r ` R ) A ) = B ) -> ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) ) |
| 27 |
|
simpr |
|- ( ( ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) /\ ( c ( .r ` R ) A ) = B ) -> ( c ( .r ` R ) A ) = B ) |
| 28 |
27
|
fveq2d |
|- ( ( ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) /\ ( c ( .r ` R ) A ) = B ) -> ( F ` ( c ( .r ` R ) A ) ) = ( F ` B ) ) |
| 29 |
26 28
|
eqtr3d |
|- ( ( ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) /\ ( c ( .r ` R ) A ) = B ) -> ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) |
| 30 |
29
|
reximi |
|- ( E. c e. X ( ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) /\ ( c ( .r ` R ) A ) = B ) -> E. c e. X ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) |
| 31 |
25 30
|
syl |
|- ( ( A. c e. X ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) /\ E. c e. X ( c ( .r ` R ) A ) = B ) -> E. c e. X ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) |
| 32 |
20 24 31
|
syl2anc |
|- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> E. c e. X ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) |
| 33 |
|
r19.29 |
|- ( ( A. c e. X ( F ` c ) e. ( Base ` S ) /\ E. c e. X ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) -> E. c e. X ( ( F ` c ) e. ( Base ` S ) /\ ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) ) |
| 34 |
14 32 33
|
syl2anc |
|- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> E. c e. X ( ( F ` c ) e. ( Base ` S ) /\ ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) ) |
| 35 |
|
oveq1 |
|- ( y = ( F ` c ) -> ( y ( .r ` S ) ( F ` A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) ) |
| 36 |
35
|
eqeq1d |
|- ( y = ( F ` c ) -> ( ( y ( .r ` S ) ( F ` A ) ) = ( F ` B ) <-> ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) ) |
| 37 |
36
|
rspcev |
|- ( ( ( F ` c ) e. ( Base ` S ) /\ ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) -> E. y e. ( Base ` S ) ( y ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) |
| 38 |
37
|
rexlimivw |
|- ( E. c e. X ( ( F ` c ) e. ( Base ` S ) /\ ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) -> E. y e. ( Base ` S ) ( y ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) |
| 39 |
34 38
|
syl |
|- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> E. y e. ( Base ` S ) ( y ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) |
| 40 |
6 3 17
|
dvdsr |
|- ( ( F ` A ) ./ ( F ` B ) <-> ( ( F ` A ) e. ( Base ` S ) /\ E. y e. ( Base ` S ) ( y ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) ) |
| 41 |
9 39 40
|
sylanbrc |
|- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> ( F ` A ) ./ ( F ` B ) ) |