Step |
Hyp |
Ref |
Expression |
1 |
|
rhmghm |
|- ( F e. ( S RingHom T ) -> F e. ( S GrpHom T ) ) |
2 |
|
rhmghm |
|- ( G e. ( S RingHom T ) -> G e. ( S GrpHom T ) ) |
3 |
|
ghmeql |
|- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> dom ( F i^i G ) e. ( SubGrp ` S ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> dom ( F i^i G ) e. ( SubGrp ` S ) ) |
5 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
6 |
|
eqid |
|- ( mulGrp ` T ) = ( mulGrp ` T ) |
7 |
5 6
|
rhmmhm |
|- ( F e. ( S RingHom T ) -> F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) |
8 |
5 6
|
rhmmhm |
|- ( G e. ( S RingHom T ) -> G e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) |
9 |
|
mhmeql |
|- ( ( F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) /\ G e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) -> dom ( F i^i G ) e. ( SubMnd ` ( mulGrp ` S ) ) ) |
10 |
7 8 9
|
syl2an |
|- ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> dom ( F i^i G ) e. ( SubMnd ` ( mulGrp ` S ) ) ) |
11 |
|
rhmrcl1 |
|- ( F e. ( S RingHom T ) -> S e. Ring ) |
12 |
11
|
adantr |
|- ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> S e. Ring ) |
13 |
5
|
issubrg3 |
|- ( S e. Ring -> ( dom ( F i^i G ) e. ( SubRing ` S ) <-> ( dom ( F i^i G ) e. ( SubGrp ` S ) /\ dom ( F i^i G ) e. ( SubMnd ` ( mulGrp ` S ) ) ) ) ) |
14 |
12 13
|
syl |
|- ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> ( dom ( F i^i G ) e. ( SubRing ` S ) <-> ( dom ( F i^i G ) e. ( SubGrp ` S ) /\ dom ( F i^i G ) e. ( SubMnd ` ( mulGrp ` S ) ) ) ) ) |
15 |
4 10 14
|
mpbir2and |
|- ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> dom ( F i^i G ) e. ( SubRing ` S ) ) |