| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmghm |  |-  ( F e. ( S RingHom T ) -> F e. ( S GrpHom T ) ) | 
						
							| 2 |  | rhmghm |  |-  ( G e. ( S RingHom T ) -> G e. ( S GrpHom T ) ) | 
						
							| 3 |  | ghmeql |  |-  ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> dom ( F i^i G ) e. ( SubGrp ` S ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> dom ( F i^i G ) e. ( SubGrp ` S ) ) | 
						
							| 5 |  | eqid |  |-  ( mulGrp ` S ) = ( mulGrp ` S ) | 
						
							| 6 |  | eqid |  |-  ( mulGrp ` T ) = ( mulGrp ` T ) | 
						
							| 7 | 5 6 | rhmmhm |  |-  ( F e. ( S RingHom T ) -> F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) | 
						
							| 8 | 5 6 | rhmmhm |  |-  ( G e. ( S RingHom T ) -> G e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) | 
						
							| 9 |  | mhmeql |  |-  ( ( F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) /\ G e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) -> dom ( F i^i G ) e. ( SubMnd ` ( mulGrp ` S ) ) ) | 
						
							| 10 | 7 8 9 | syl2an |  |-  ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> dom ( F i^i G ) e. ( SubMnd ` ( mulGrp ` S ) ) ) | 
						
							| 11 |  | rhmrcl1 |  |-  ( F e. ( S RingHom T ) -> S e. Ring ) | 
						
							| 12 | 11 | adantr |  |-  ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> S e. Ring ) | 
						
							| 13 | 5 | issubrg3 |  |-  ( S e. Ring -> ( dom ( F i^i G ) e. ( SubRing ` S ) <-> ( dom ( F i^i G ) e. ( SubGrp ` S ) /\ dom ( F i^i G ) e. ( SubMnd ` ( mulGrp ` S ) ) ) ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> ( dom ( F i^i G ) e. ( SubRing ` S ) <-> ( dom ( F i^i G ) e. ( SubGrp ` S ) /\ dom ( F i^i G ) e. ( SubMnd ` ( mulGrp ` S ) ) ) ) ) | 
						
							| 15 | 4 10 14 | mpbir2and |  |-  ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> dom ( F i^i G ) e. ( SubRing ` S ) ) |