Description: A ring homomorphism is a function. (Contributed by Stefan O'Rear, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmf.b | |- B = ( Base ` R ) |
|
| rhmf.c | |- C = ( Base ` S ) |
||
| Assertion | rhmf | |- ( F e. ( R RingHom S ) -> F : B --> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmf.b | |- B = ( Base ` R ) |
|
| 2 | rhmf.c | |- C = ( Base ` S ) |
|
| 3 | rhmghm | |- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
|
| 4 | 1 2 | ghmf | |- ( F e. ( R GrpHom S ) -> F : B --> C ) |
| 5 | 3 4 | syl | |- ( F e. ( R RingHom S ) -> F : B --> C ) |