Description: A ring homomorphism is a function. (Contributed by Stefan O'Rear, 8-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rhmf.b | |- B = ( Base ` R ) |
|
rhmf.c | |- C = ( Base ` S ) |
||
Assertion | rhmf | |- ( F e. ( R RingHom S ) -> F : B --> C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmf.b | |- B = ( Base ` R ) |
|
2 | rhmf.c | |- C = ( Base ` S ) |
|
3 | rhmghm | |- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
|
4 | 1 2 | ghmf | |- ( F e. ( R GrpHom S ) -> F : B --> C ) |
5 | 3 4 | syl | |- ( F e. ( R RingHom S ) -> F : B --> C ) |