Metamath Proof Explorer


Theorem rhmf

Description: A ring homomorphism is a function. (Contributed by Stefan O'Rear, 8-Mar-2015)

Ref Expression
Hypotheses rhmf.b
|- B = ( Base ` R )
rhmf.c
|- C = ( Base ` S )
Assertion rhmf
|- ( F e. ( R RingHom S ) -> F : B --> C )

Proof

Step Hyp Ref Expression
1 rhmf.b
 |-  B = ( Base ` R )
2 rhmf.c
 |-  C = ( Base ` S )
3 rhmghm
 |-  ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) )
4 1 2 ghmf
 |-  ( F e. ( R GrpHom S ) -> F : B --> C )
5 3 4 syl
 |-  ( F e. ( R RingHom S ) -> F : B --> C )