Description: A ring homomorphism is an additive group homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rhmghm | |- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
2 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
3 | 1 2 | isrhm | |- ( F e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) ) |
4 | 3 | simprbi | |- ( F e. ( R RingHom S ) -> ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
5 | 4 | simpld | |- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |