Step |
Hyp |
Ref |
Expression |
1 |
|
rhmghm |
|- ( F e. ( M RingHom N ) -> F e. ( M GrpHom N ) ) |
2 |
|
subrgsubg |
|- ( X e. ( SubRing ` M ) -> X e. ( SubGrp ` M ) ) |
3 |
|
ghmima |
|- ( ( F e. ( M GrpHom N ) /\ X e. ( SubGrp ` M ) ) -> ( F " X ) e. ( SubGrp ` N ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( F e. ( M RingHom N ) /\ X e. ( SubRing ` M ) ) -> ( F " X ) e. ( SubGrp ` N ) ) |
5 |
|
eqid |
|- ( mulGrp ` M ) = ( mulGrp ` M ) |
6 |
|
eqid |
|- ( mulGrp ` N ) = ( mulGrp ` N ) |
7 |
5 6
|
rhmmhm |
|- ( F e. ( M RingHom N ) -> F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) ) |
8 |
5
|
subrgsubm |
|- ( X e. ( SubRing ` M ) -> X e. ( SubMnd ` ( mulGrp ` M ) ) ) |
9 |
|
mhmima |
|- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubMnd ` ( mulGrp ` M ) ) ) -> ( F " X ) e. ( SubMnd ` ( mulGrp ` N ) ) ) |
10 |
7 8 9
|
syl2an |
|- ( ( F e. ( M RingHom N ) /\ X e. ( SubRing ` M ) ) -> ( F " X ) e. ( SubMnd ` ( mulGrp ` N ) ) ) |
11 |
|
rhmrcl2 |
|- ( F e. ( M RingHom N ) -> N e. Ring ) |
12 |
11
|
adantr |
|- ( ( F e. ( M RingHom N ) /\ X e. ( SubRing ` M ) ) -> N e. Ring ) |
13 |
6
|
issubrg3 |
|- ( N e. Ring -> ( ( F " X ) e. ( SubRing ` N ) <-> ( ( F " X ) e. ( SubGrp ` N ) /\ ( F " X ) e. ( SubMnd ` ( mulGrp ` N ) ) ) ) ) |
14 |
12 13
|
syl |
|- ( ( F e. ( M RingHom N ) /\ X e. ( SubRing ` M ) ) -> ( ( F " X ) e. ( SubRing ` N ) <-> ( ( F " X ) e. ( SubGrp ` N ) /\ ( F " X ) e. ( SubMnd ` ( mulGrp ` N ) ) ) ) ) |
15 |
4 10 14
|
mpbir2and |
|- ( ( F e. ( M RingHom N ) /\ X e. ( SubRing ` M ) ) -> ( F " X ) e. ( SubRing ` N ) ) |