| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmghm |
|- ( F e. ( M RingHom N ) -> F e. ( M GrpHom N ) ) |
| 2 |
|
subrngsubg |
|- ( X e. ( SubRng ` M ) -> X e. ( SubGrp ` M ) ) |
| 3 |
|
ghmima |
|- ( ( F e. ( M GrpHom N ) /\ X e. ( SubGrp ` M ) ) -> ( F " X ) e. ( SubGrp ` N ) ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> ( F " X ) e. ( SubGrp ` N ) ) |
| 5 |
|
eqid |
|- ( mulGrp ` M ) = ( mulGrp ` M ) |
| 6 |
|
eqid |
|- ( mulGrp ` N ) = ( mulGrp ` N ) |
| 7 |
5 6
|
rhmmhm |
|- ( F e. ( M RingHom N ) -> F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) ) |
| 8 |
|
simpl |
|- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) ) |
| 9 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
| 10 |
5 9
|
mgpbas |
|- ( Base ` M ) = ( Base ` ( mulGrp ` M ) ) |
| 11 |
10
|
eqcomi |
|- ( Base ` ( mulGrp ` M ) ) = ( Base ` M ) |
| 12 |
11
|
subrngss |
|- ( X e. ( SubRng ` M ) -> X C_ ( Base ` ( mulGrp ` M ) ) ) |
| 13 |
12
|
adantl |
|- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> X C_ ( Base ` ( mulGrp ` M ) ) ) |
| 14 |
|
eqidd |
|- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> ( +g ` ( mulGrp ` M ) ) = ( +g ` ( mulGrp ` M ) ) ) |
| 15 |
|
eqidd |
|- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> ( +g ` ( mulGrp ` N ) ) = ( +g ` ( mulGrp ` N ) ) ) |
| 16 |
|
eqid |
|- ( .r ` M ) = ( .r ` M ) |
| 17 |
5 16
|
mgpplusg |
|- ( .r ` M ) = ( +g ` ( mulGrp ` M ) ) |
| 18 |
17
|
eqcomi |
|- ( +g ` ( mulGrp ` M ) ) = ( .r ` M ) |
| 19 |
18
|
subrngmcl |
|- ( ( X e. ( SubRng ` M ) /\ z e. X /\ x e. X ) -> ( z ( +g ` ( mulGrp ` M ) ) x ) e. X ) |
| 20 |
19
|
3adant1l |
|- ( ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) /\ z e. X /\ x e. X ) -> ( z ( +g ` ( mulGrp ` M ) ) x ) e. X ) |
| 21 |
8 13 14 15 20
|
mhmimalem |
|- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` ( mulGrp ` N ) ) y ) e. ( F " X ) ) |
| 22 |
|
eqid |
|- ( .r ` N ) = ( .r ` N ) |
| 23 |
6 22
|
mgpplusg |
|- ( .r ` N ) = ( +g ` ( mulGrp ` N ) ) |
| 24 |
23
|
eqcomi |
|- ( +g ` ( mulGrp ` N ) ) = ( .r ` N ) |
| 25 |
24
|
oveqi |
|- ( x ( +g ` ( mulGrp ` N ) ) y ) = ( x ( .r ` N ) y ) |
| 26 |
25
|
eleq1i |
|- ( ( x ( +g ` ( mulGrp ` N ) ) y ) e. ( F " X ) <-> ( x ( .r ` N ) y ) e. ( F " X ) ) |
| 27 |
26
|
2ralbii |
|- ( A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` ( mulGrp ` N ) ) y ) e. ( F " X ) <-> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) |
| 28 |
21 27
|
sylib |
|- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) |
| 29 |
7 28
|
sylan |
|- ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) |
| 30 |
|
rhmrcl2 |
|- ( F e. ( M RingHom N ) -> N e. Ring ) |
| 31 |
|
ringrng |
|- ( N e. Ring -> N e. Rng ) |
| 32 |
30 31
|
syl |
|- ( F e. ( M RingHom N ) -> N e. Rng ) |
| 33 |
32
|
adantr |
|- ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> N e. Rng ) |
| 34 |
|
eqid |
|- ( Base ` N ) = ( Base ` N ) |
| 35 |
34 22
|
issubrng2 |
|- ( N e. Rng -> ( ( F " X ) e. ( SubRng ` N ) <-> ( ( F " X ) e. ( SubGrp ` N ) /\ A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) ) ) |
| 36 |
33 35
|
syl |
|- ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> ( ( F " X ) e. ( SubRng ` N ) <-> ( ( F " X ) e. ( SubGrp ` N ) /\ A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) ) ) |
| 37 |
4 29 36
|
mpbir2and |
|- ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> ( F " X ) e. ( SubRng ` N ) ) |