| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringrng |
|- ( R e. Ring -> R e. Rng ) |
| 2 |
|
ringrng |
|- ( S e. Ring -> S e. Rng ) |
| 3 |
1 2
|
anim12i |
|- ( ( R e. Ring /\ S e. Ring ) -> ( R e. Rng /\ S e. Rng ) ) |
| 4 |
|
mhmismgmhm |
|- ( F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) -> F e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) |
| 5 |
4
|
anim2i |
|- ( ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) -> ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) |
| 6 |
3 5
|
anim12i |
|- ( ( ( R e. Ring /\ S e. Ring ) /\ ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) -> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) ) |
| 7 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 8 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
| 9 |
7 8
|
isrhm |
|- ( F e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) ) |
| 10 |
7 8
|
isrnghmmul |
|- ( F e. ( R RngHom S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) ) |
| 11 |
6 9 10
|
3imtr4i |
|- ( F e. ( R RingHom S ) -> F e. ( R RngHom S ) ) |