Description: A ring homomorphism is a homomorphism of multiplicative monoids. (Contributed by Stefan O'Rear, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrhm.m | |- M = ( mulGrp ` R ) |
|
| isrhm.n | |- N = ( mulGrp ` S ) |
||
| Assertion | rhmmhm | |- ( F e. ( R RingHom S ) -> F e. ( M MndHom N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrhm.m | |- M = ( mulGrp ` R ) |
|
| 2 | isrhm.n | |- N = ( mulGrp ` S ) |
|
| 3 | 1 2 | isrhm | |- ( F e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( F e. ( R GrpHom S ) /\ F e. ( M MndHom N ) ) ) ) |
| 4 | 3 | simprbi | |- ( F e. ( R RingHom S ) -> ( F e. ( R GrpHom S ) /\ F e. ( M MndHom N ) ) ) |
| 5 | 4 | simprd | |- ( F e. ( R RingHom S ) -> F e. ( M MndHom N ) ) |