Step |
Hyp |
Ref |
Expression |
1 |
|
rhmmul.x |
|- X = ( Base ` R ) |
2 |
|
rhmmul.m |
|- .x. = ( .r ` R ) |
3 |
|
rhmmul.n |
|- .X. = ( .r ` S ) |
4 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
5 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
6 |
4 5
|
rhmmhm |
|- ( F e. ( R RingHom S ) -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) |
7 |
4 1
|
mgpbas |
|- X = ( Base ` ( mulGrp ` R ) ) |
8 |
4 2
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
9 |
5 3
|
mgpplusg |
|- .X. = ( +g ` ( mulGrp ` S ) ) |
10 |
7 8 9
|
mhmlin |
|- ( ( F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) /\ A e. X /\ B e. X ) -> ( F ` ( A .x. B ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) |
11 |
6 10
|
syl3an1 |
|- ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) -> ( F ` ( A .x. B ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) |