| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Base ` ( oppR ` R ) ) = ( Base ` ( oppR ` R ) ) |
| 2 |
|
eqid |
|- ( 1r ` ( oppR ` R ) ) = ( 1r ` ( oppR ` R ) ) |
| 3 |
|
eqid |
|- ( 1r ` ( oppR ` S ) ) = ( 1r ` ( oppR ` S ) ) |
| 4 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
| 5 |
|
eqid |
|- ( .r ` ( oppR ` S ) ) = ( .r ` ( oppR ` S ) ) |
| 6 |
|
rhmrcl1 |
|- ( F e. ( R RingHom S ) -> R e. Ring ) |
| 7 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
| 8 |
7
|
opprringb |
|- ( R e. Ring <-> ( oppR ` R ) e. Ring ) |
| 9 |
6 8
|
sylib |
|- ( F e. ( R RingHom S ) -> ( oppR ` R ) e. Ring ) |
| 10 |
|
rhmrcl2 |
|- ( F e. ( R RingHom S ) -> S e. Ring ) |
| 11 |
|
eqid |
|- ( oppR ` S ) = ( oppR ` S ) |
| 12 |
11
|
opprringb |
|- ( S e. Ring <-> ( oppR ` S ) e. Ring ) |
| 13 |
10 12
|
sylib |
|- ( F e. ( R RingHom S ) -> ( oppR ` S ) e. Ring ) |
| 14 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 15 |
7 14
|
oppr1 |
|- ( 1r ` R ) = ( 1r ` ( oppR ` R ) ) |
| 16 |
15
|
eqcomi |
|- ( 1r ` ( oppR ` R ) ) = ( 1r ` R ) |
| 17 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
| 18 |
11 17
|
oppr1 |
|- ( 1r ` S ) = ( 1r ` ( oppR ` S ) ) |
| 19 |
18
|
eqcomi |
|- ( 1r ` ( oppR ` S ) ) = ( 1r ` S ) |
| 20 |
16 19
|
rhm1 |
|- ( F e. ( R RingHom S ) -> ( F ` ( 1r ` ( oppR ` R ) ) ) = ( 1r ` ( oppR ` S ) ) ) |
| 21 |
|
simpl |
|- ( ( F e. ( R RingHom S ) /\ ( x e. ( Base ` ( oppR ` R ) ) /\ y e. ( Base ` ( oppR ` R ) ) ) ) -> F e. ( R RingHom S ) ) |
| 22 |
|
simprr |
|- ( ( F e. ( R RingHom S ) /\ ( x e. ( Base ` ( oppR ` R ) ) /\ y e. ( Base ` ( oppR ` R ) ) ) ) -> y e. ( Base ` ( oppR ` R ) ) ) |
| 23 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 24 |
7 23
|
opprbas |
|- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
| 25 |
22 24
|
eleqtrrdi |
|- ( ( F e. ( R RingHom S ) /\ ( x e. ( Base ` ( oppR ` R ) ) /\ y e. ( Base ` ( oppR ` R ) ) ) ) -> y e. ( Base ` R ) ) |
| 26 |
|
simprl |
|- ( ( F e. ( R RingHom S ) /\ ( x e. ( Base ` ( oppR ` R ) ) /\ y e. ( Base ` ( oppR ` R ) ) ) ) -> x e. ( Base ` ( oppR ` R ) ) ) |
| 27 |
26 24
|
eleqtrrdi |
|- ( ( F e. ( R RingHom S ) /\ ( x e. ( Base ` ( oppR ` R ) ) /\ y e. ( Base ` ( oppR ` R ) ) ) ) -> x e. ( Base ` R ) ) |
| 28 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 29 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 30 |
23 28 29
|
rhmmul |
|- ( ( F e. ( R RingHom S ) /\ y e. ( Base ` R ) /\ x e. ( Base ` R ) ) -> ( F ` ( y ( .r ` R ) x ) ) = ( ( F ` y ) ( .r ` S ) ( F ` x ) ) ) |
| 31 |
21 25 27 30
|
syl3anc |
|- ( ( F e. ( R RingHom S ) /\ ( x e. ( Base ` ( oppR ` R ) ) /\ y e. ( Base ` ( oppR ` R ) ) ) ) -> ( F ` ( y ( .r ` R ) x ) ) = ( ( F ` y ) ( .r ` S ) ( F ` x ) ) ) |
| 32 |
23 28 7 4
|
opprmul |
|- ( x ( .r ` ( oppR ` R ) ) y ) = ( y ( .r ` R ) x ) |
| 33 |
32
|
fveq2i |
|- ( F ` ( x ( .r ` ( oppR ` R ) ) y ) ) = ( F ` ( y ( .r ` R ) x ) ) |
| 34 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 35 |
34 29 11 5
|
opprmul |
|- ( ( F ` x ) ( .r ` ( oppR ` S ) ) ( F ` y ) ) = ( ( F ` y ) ( .r ` S ) ( F ` x ) ) |
| 36 |
31 33 35
|
3eqtr4g |
|- ( ( F e. ( R RingHom S ) /\ ( x e. ( Base ` ( oppR ` R ) ) /\ y e. ( Base ` ( oppR ` R ) ) ) ) -> ( F ` ( x ( .r ` ( oppR ` R ) ) y ) ) = ( ( F ` x ) ( .r ` ( oppR ` S ) ) ( F ` y ) ) ) |
| 37 |
|
ringgrp |
|- ( ( oppR ` R ) e. Ring -> ( oppR ` R ) e. Grp ) |
| 38 |
9 37
|
syl |
|- ( F e. ( R RingHom S ) -> ( oppR ` R ) e. Grp ) |
| 39 |
|
ringgrp |
|- ( ( oppR ` S ) e. Ring -> ( oppR ` S ) e. Grp ) |
| 40 |
13 39
|
syl |
|- ( F e. ( R RingHom S ) -> ( oppR ` S ) e. Grp ) |
| 41 |
23 34
|
rhmf |
|- ( F e. ( R RingHom S ) -> F : ( Base ` R ) --> ( Base ` S ) ) |
| 42 |
|
rhmghm |
|- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
| 43 |
42
|
ad2antrr |
|- ( ( ( F e. ( R RingHom S ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> F e. ( R GrpHom S ) ) |
| 44 |
|
simplr |
|- ( ( ( F e. ( R RingHom S ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> x e. ( Base ` R ) ) |
| 45 |
|
simpr |
|- ( ( ( F e. ( R RingHom S ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> y e. ( Base ` R ) ) |
| 46 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 47 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
| 48 |
23 46 47
|
ghmlin |
|- ( ( F e. ( R GrpHom S ) /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) ) |
| 49 |
43 44 45 48
|
syl3anc |
|- ( ( ( F e. ( R RingHom S ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) ) |
| 50 |
49
|
ralrimiva |
|- ( ( F e. ( R RingHom S ) /\ x e. ( Base ` R ) ) -> A. y e. ( Base ` R ) ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) ) |
| 51 |
50
|
ralrimiva |
|- ( F e. ( R RingHom S ) -> A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) ) |
| 52 |
41 51
|
jca |
|- ( F e. ( R RingHom S ) -> ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) ) ) |
| 53 |
38 40 52
|
jca31 |
|- ( F e. ( R RingHom S ) -> ( ( ( oppR ` R ) e. Grp /\ ( oppR ` S ) e. Grp ) /\ ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) ) ) ) |
| 54 |
11 34
|
opprbas |
|- ( Base ` S ) = ( Base ` ( oppR ` S ) ) |
| 55 |
7 46
|
oppradd |
|- ( +g ` R ) = ( +g ` ( oppR ` R ) ) |
| 56 |
11 47
|
oppradd |
|- ( +g ` S ) = ( +g ` ( oppR ` S ) ) |
| 57 |
24 54 55 56
|
isghm |
|- ( F e. ( ( oppR ` R ) GrpHom ( oppR ` S ) ) <-> ( ( ( oppR ` R ) e. Grp /\ ( oppR ` S ) e. Grp ) /\ ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) ) ) ) |
| 58 |
53 57
|
sylibr |
|- ( F e. ( R RingHom S ) -> F e. ( ( oppR ` R ) GrpHom ( oppR ` S ) ) ) |
| 59 |
1 2 3 4 5 9 13 20 36 58
|
isrhm2d |
|- ( F e. ( R RingHom S ) -> F e. ( ( oppR ` R ) RingHom ( oppR ` S ) ) ) |