Step |
Hyp |
Ref |
Expression |
1 |
|
rhmply1mon.p |
|- P = ( Poly1 ` R ) |
2 |
|
rhmply1mon.q |
|- Q = ( Poly1 ` S ) |
3 |
|
rhmply1mon.b |
|- B = ( Base ` P ) |
4 |
|
rhmply1mon.k |
|- K = ( Base ` R ) |
5 |
|
rhmply1mon.f |
|- F = ( p e. B |-> ( H o. p ) ) |
6 |
|
rhmply1mon.x |
|- X = ( var1 ` R ) |
7 |
|
rhmply1mon.y |
|- Y = ( var1 ` S ) |
8 |
|
rhmply1mon.t |
|- .x. = ( .s ` P ) |
9 |
|
rhmply1mon.u |
|- .xb = ( .s ` Q ) |
10 |
|
rhmply1mon.m |
|- M = ( mulGrp ` P ) |
11 |
|
rhmply1mon.n |
|- N = ( mulGrp ` Q ) |
12 |
|
rhmply1mon.l |
|- .^ = ( .g ` M ) |
13 |
|
rhmply1mon.w |
|- ./\ = ( .g ` N ) |
14 |
|
rhmply1mon.h |
|- ( ph -> H e. ( R RingHom S ) ) |
15 |
|
rhmply1mon.c |
|- ( ph -> C e. K ) |
16 |
|
rhmply1mon.e |
|- ( ph -> E e. NN0 ) |
17 |
10 3
|
mgpbas |
|- B = ( Base ` M ) |
18 |
|
rhmrcl1 |
|- ( H e. ( R RingHom S ) -> R e. Ring ) |
19 |
14 18
|
syl |
|- ( ph -> R e. Ring ) |
20 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
21 |
19 20
|
syl |
|- ( ph -> P e. Ring ) |
22 |
10
|
ringmgp |
|- ( P e. Ring -> M e. Mnd ) |
23 |
21 22
|
syl |
|- ( ph -> M e. Mnd ) |
24 |
6 1 3
|
vr1cl |
|- ( R e. Ring -> X e. B ) |
25 |
19 24
|
syl |
|- ( ph -> X e. B ) |
26 |
17 12 23 16 25
|
mulgnn0cld |
|- ( ph -> ( E .^ X ) e. B ) |
27 |
1 2 3 4 5 8 9 14 15 26
|
rhmply1vsca |
|- ( ph -> ( F ` ( C .x. ( E .^ X ) ) ) = ( ( H ` C ) .xb ( F ` ( E .^ X ) ) ) ) |
28 |
1 2 3 5 14
|
rhmply1 |
|- ( ph -> F e. ( P RingHom Q ) ) |
29 |
10 11
|
rhmmhm |
|- ( F e. ( P RingHom Q ) -> F e. ( M MndHom N ) ) |
30 |
28 29
|
syl |
|- ( ph -> F e. ( M MndHom N ) ) |
31 |
17 12 13
|
mhmmulg |
|- ( ( F e. ( M MndHom N ) /\ E e. NN0 /\ X e. B ) -> ( F ` ( E .^ X ) ) = ( E ./\ ( F ` X ) ) ) |
32 |
30 16 25 31
|
syl3anc |
|- ( ph -> ( F ` ( E .^ X ) ) = ( E ./\ ( F ` X ) ) ) |
33 |
1 2 3 5 6 7 14
|
rhmply1vr1 |
|- ( ph -> ( F ` X ) = Y ) |
34 |
33
|
oveq2d |
|- ( ph -> ( E ./\ ( F ` X ) ) = ( E ./\ Y ) ) |
35 |
32 34
|
eqtrd |
|- ( ph -> ( F ` ( E .^ X ) ) = ( E ./\ Y ) ) |
36 |
35
|
oveq2d |
|- ( ph -> ( ( H ` C ) .xb ( F ` ( E .^ X ) ) ) = ( ( H ` C ) .xb ( E ./\ Y ) ) ) |
37 |
27 36
|
eqtrd |
|- ( ph -> ( F ` ( C .x. ( E .^ X ) ) ) = ( ( H ` C ) .xb ( E ./\ Y ) ) ) |