Step |
Hyp |
Ref |
Expression |
1 |
|
rhmply1vsca.p |
|- P = ( Poly1 ` R ) |
2 |
|
rhmply1vsca.q |
|- Q = ( Poly1 ` S ) |
3 |
|
rhmply1vsca.b |
|- B = ( Base ` P ) |
4 |
|
rhmply1vsca.k |
|- K = ( Base ` R ) |
5 |
|
rhmply1vsca.f |
|- F = ( p e. B |-> ( H o. p ) ) |
6 |
|
rhmply1vsca.t |
|- .x. = ( .s ` P ) |
7 |
|
rhmply1vsca.u |
|- .xb = ( .s ` Q ) |
8 |
|
rhmply1vsca.h |
|- ( ph -> H e. ( R RingHom S ) ) |
9 |
|
rhmply1vsca.c |
|- ( ph -> C e. K ) |
10 |
|
rhmply1vsca.x |
|- ( ph -> X e. B ) |
11 |
|
fconst6g |
|- ( C e. K -> ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) : { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } --> K ) |
12 |
9 11
|
syl |
|- ( ph -> ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) : { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } --> K ) |
13 |
|
psr1baslem |
|- ( NN0 ^m 1o ) = { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } |
14 |
13
|
feq2i |
|- ( ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) : ( NN0 ^m 1o ) --> K <-> ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) : { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } --> K ) |
15 |
12 14
|
sylibr |
|- ( ph -> ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) : ( NN0 ^m 1o ) --> K ) |
16 |
1 3 4
|
ply1basf |
|- ( X e. B -> X : ( NN0 ^m 1o ) --> K ) |
17 |
10 16
|
syl |
|- ( ph -> X : ( NN0 ^m 1o ) --> K ) |
18 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
19 |
4 18
|
rhmf |
|- ( H e. ( R RingHom S ) -> H : K --> ( Base ` S ) ) |
20 |
8 19
|
syl |
|- ( ph -> H : K --> ( Base ` S ) ) |
21 |
20
|
ffnd |
|- ( ph -> H Fn K ) |
22 |
|
ovexd |
|- ( ph -> ( NN0 ^m 1o ) e. _V ) |
23 |
|
rhmrcl1 |
|- ( H e. ( R RingHom S ) -> R e. Ring ) |
24 |
8 23
|
syl |
|- ( ph -> R e. Ring ) |
25 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
26 |
4 25
|
ringcl |
|- ( ( R e. Ring /\ a e. K /\ b e. K ) -> ( a ( .r ` R ) b ) e. K ) |
27 |
24 26
|
syl3an1 |
|- ( ( ph /\ a e. K /\ b e. K ) -> ( a ( .r ` R ) b ) e. K ) |
28 |
27
|
3expb |
|- ( ( ph /\ ( a e. K /\ b e. K ) ) -> ( a ( .r ` R ) b ) e. K ) |
29 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
30 |
4 25 29
|
rhmmul |
|- ( ( H e. ( R RingHom S ) /\ a e. K /\ b e. K ) -> ( H ` ( a ( .r ` R ) b ) ) = ( ( H ` a ) ( .r ` S ) ( H ` b ) ) ) |
31 |
8 30
|
syl3an1 |
|- ( ( ph /\ a e. K /\ b e. K ) -> ( H ` ( a ( .r ` R ) b ) ) = ( ( H ` a ) ( .r ` S ) ( H ` b ) ) ) |
32 |
31
|
3expb |
|- ( ( ph /\ ( a e. K /\ b e. K ) ) -> ( H ` ( a ( .r ` R ) b ) ) = ( ( H ` a ) ( .r ` S ) ( H ` b ) ) ) |
33 |
15 17 21 22 28 32
|
coof |
|- ( ph -> ( H o. ( ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) oF ( .r ` R ) X ) ) = ( ( H o. ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) ) oF ( .r ` S ) ( H o. X ) ) ) |
34 |
|
fcoconst |
|- ( ( H Fn K /\ C e. K ) -> ( H o. ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) ) = ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { ( H ` C ) } ) ) |
35 |
21 9 34
|
syl2anc |
|- ( ph -> ( H o. ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) ) = ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { ( H ` C ) } ) ) |
36 |
35
|
oveq1d |
|- ( ph -> ( ( H o. ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) ) oF ( .r ` S ) ( H o. X ) ) = ( ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { ( H ` C ) } ) oF ( .r ` S ) ( H o. X ) ) ) |
37 |
33 36
|
eqtrd |
|- ( ph -> ( H o. ( ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) oF ( .r ` R ) X ) ) = ( ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { ( H ` C ) } ) oF ( .r ` S ) ( H o. X ) ) ) |
38 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
39 |
|
eqid |
|- ( .s ` ( 1o mPoly R ) ) = ( .s ` ( 1o mPoly R ) ) |
40 |
1 3
|
ply1bas |
|- B = ( Base ` ( 1o mPoly R ) ) |
41 |
|
eqid |
|- { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } |
42 |
38 39 4 40 25 41 9 10
|
mplvsca |
|- ( ph -> ( C ( .s ` ( 1o mPoly R ) ) X ) = ( ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) oF ( .r ` R ) X ) ) |
43 |
42
|
coeq2d |
|- ( ph -> ( H o. ( C ( .s ` ( 1o mPoly R ) ) X ) ) = ( H o. ( ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { C } ) oF ( .r ` R ) X ) ) ) |
44 |
|
eqid |
|- ( 1o mPoly S ) = ( 1o mPoly S ) |
45 |
|
eqid |
|- ( .s ` ( 1o mPoly S ) ) = ( .s ` ( 1o mPoly S ) ) |
46 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
47 |
2 46
|
ply1bas |
|- ( Base ` Q ) = ( Base ` ( 1o mPoly S ) ) |
48 |
20 9
|
ffvelcdmd |
|- ( ph -> ( H ` C ) e. ( Base ` S ) ) |
49 |
|
rhmghm |
|- ( H e. ( R RingHom S ) -> H e. ( R GrpHom S ) ) |
50 |
|
ghmmhm |
|- ( H e. ( R GrpHom S ) -> H e. ( R MndHom S ) ) |
51 |
8 49 50
|
3syl |
|- ( ph -> H e. ( R MndHom S ) ) |
52 |
1 2 3 46 51 10
|
mhmcoply1 |
|- ( ph -> ( H o. X ) e. ( Base ` Q ) ) |
53 |
44 45 18 47 29 41 48 52
|
mplvsca |
|- ( ph -> ( ( H ` C ) ( .s ` ( 1o mPoly S ) ) ( H o. X ) ) = ( ( { h e. ( NN0 ^m 1o ) | ( `' h " NN ) e. Fin } X. { ( H ` C ) } ) oF ( .r ` S ) ( H o. X ) ) ) |
54 |
37 43 53
|
3eqtr4d |
|- ( ph -> ( H o. ( C ( .s ` ( 1o mPoly R ) ) X ) ) = ( ( H ` C ) ( .s ` ( 1o mPoly S ) ) ( H o. X ) ) ) |
55 |
1 38 6
|
ply1vsca |
|- .x. = ( .s ` ( 1o mPoly R ) ) |
56 |
55
|
oveqi |
|- ( C .x. X ) = ( C ( .s ` ( 1o mPoly R ) ) X ) |
57 |
56
|
coeq2i |
|- ( H o. ( C .x. X ) ) = ( H o. ( C ( .s ` ( 1o mPoly R ) ) X ) ) |
58 |
2 44 7
|
ply1vsca |
|- .xb = ( .s ` ( 1o mPoly S ) ) |
59 |
58
|
oveqi |
|- ( ( H ` C ) .xb ( H o. X ) ) = ( ( H ` C ) ( .s ` ( 1o mPoly S ) ) ( H o. X ) ) |
60 |
54 57 59
|
3eqtr4g |
|- ( ph -> ( H o. ( C .x. X ) ) = ( ( H ` C ) .xb ( H o. X ) ) ) |
61 |
|
coeq2 |
|- ( p = ( C .x. X ) -> ( H o. p ) = ( H o. ( C .x. X ) ) ) |
62 |
1 3 4 6 24 9 10
|
ply1vscl |
|- ( ph -> ( C .x. X ) e. B ) |
63 |
8 62
|
coexd |
|- ( ph -> ( H o. ( C .x. X ) ) e. _V ) |
64 |
5 61 62 63
|
fvmptd3 |
|- ( ph -> ( F ` ( C .x. X ) ) = ( H o. ( C .x. X ) ) ) |
65 |
|
coeq2 |
|- ( p = X -> ( H o. p ) = ( H o. X ) ) |
66 |
8 10
|
coexd |
|- ( ph -> ( H o. X ) e. _V ) |
67 |
5 65 10 66
|
fvmptd3 |
|- ( ph -> ( F ` X ) = ( H o. X ) ) |
68 |
67
|
oveq2d |
|- ( ph -> ( ( H ` C ) .xb ( F ` X ) ) = ( ( H ` C ) .xb ( H o. X ) ) ) |
69 |
60 64 68
|
3eqtr4d |
|- ( ph -> ( F ` ( C .x. X ) ) = ( ( H ` C ) .xb ( F ` X ) ) ) |