| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rhmpreimaidl.i | 
							 |-  I = ( LIdeal ` R )  | 
						
						
							| 2 | 
							
								
							 | 
							cnvimass | 
							 |-  ( `' F " J ) C_ dom F  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` R ) = ( Base ` R )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` S ) = ( Base ` S )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							rhmf | 
							 |-  ( F e. ( R RingHom S ) -> F : ( Base ` R ) --> ( Base ` S ) )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							fssdm | 
							 |-  ( F e. ( R RingHom S ) -> ( `' F " J ) C_ ( Base ` R ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( `' F " J ) C_ ( Base ` R ) )  | 
						
						
							| 8 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> F : ( Base ` R ) --> ( Base ` S ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ffund | 
							 |-  ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> Fun F )  | 
						
						
							| 10 | 
							
								
							 | 
							rhmrcl1 | 
							 |-  ( F e. ( R RingHom S ) -> R e. Ring )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> R e. Ring )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` R ) = ( 0g ` R )  | 
						
						
							| 13 | 
							
								3 12
							 | 
							ring0cl | 
							 |-  ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							syl | 
							 |-  ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( 0g ` R ) e. ( Base ` R ) )  | 
						
						
							| 15 | 
							
								8
							 | 
							fdmd | 
							 |-  ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> dom F = ( Base ` R ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							eleqtrrd | 
							 |-  ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( 0g ` R ) e. dom F )  | 
						
						
							| 17 | 
							
								
							 | 
							rhmghm | 
							 |-  ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) )  | 
						
						
							| 18 | 
							
								
							 | 
							ghmmhm | 
							 |-  ( F e. ( R GrpHom S ) -> F e. ( R MndHom S ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` S ) = ( 0g ` S )  | 
						
						
							| 20 | 
							
								12 19
							 | 
							mhm0 | 
							 |-  ( F e. ( R MndHom S ) -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) )  | 
						
						
							| 21 | 
							
								17 18 20
							 | 
							3syl | 
							 |-  ( F e. ( R RingHom S ) -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantr | 
							 |-  ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) )  | 
						
						
							| 23 | 
							
								
							 | 
							rhmrcl2 | 
							 |-  ( F e. ( R RingHom S ) -> S e. Ring )  | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							 |-  ( LIdeal ` S ) = ( LIdeal ` S )  | 
						
						
							| 25 | 
							
								24 19
							 | 
							lidl0cl | 
							 |-  ( ( S e. Ring /\ J e. ( LIdeal ` S ) ) -> ( 0g ` S ) e. J )  | 
						
						
							| 26 | 
							
								23 25
							 | 
							sylan | 
							 |-  ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( 0g ` S ) e. J )  | 
						
						
							| 27 | 
							
								22 26
							 | 
							eqeltrd | 
							 |-  ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( F ` ( 0g ` R ) ) e. J )  | 
						
						
							| 28 | 
							
								
							 | 
							fvimacnv | 
							 |-  ( ( Fun F /\ ( 0g ` R ) e. dom F ) -> ( ( F ` ( 0g ` R ) ) e. J <-> ( 0g ` R ) e. ( `' F " J ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							biimpa | 
							 |-  ( ( ( Fun F /\ ( 0g ` R ) e. dom F ) /\ ( F ` ( 0g ` R ) ) e. J ) -> ( 0g ` R ) e. ( `' F " J ) )  | 
						
						
							| 30 | 
							
								9 16 27 29
							 | 
							syl21anc | 
							 |-  ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( 0g ` R ) e. ( `' F " J ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							ne0d | 
							 |-  ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( `' F " J ) =/= (/) )  | 
						
						
							| 32 | 
							
								8
							 | 
							ffnd | 
							 |-  ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> F Fn ( Base ` R ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> F Fn ( Base ` R ) )  | 
						
						
							| 34 | 
							
								11
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> R e. Ring )  | 
						
						
							| 35 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> x e. ( Base ` R ) )  | 
						
						
							| 36 | 
							
								6
							 | 
							ad2antrr | 
							 |-  ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) -> ( `' F " J ) C_ ( Base ` R ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							sselda | 
							 |-  ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) -> a e. ( Base ` R ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							adantr | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> a e. ( Base ` R ) )  | 
						
						
							| 39 | 
							
								
							 | 
							eqid | 
							 |-  ( .r ` R ) = ( .r ` R )  | 
						
						
							| 40 | 
							
								3 39
							 | 
							ringcl | 
							 |-  ( ( R e. Ring /\ x e. ( Base ` R ) /\ a e. ( Base ` R ) ) -> ( x ( .r ` R ) a ) e. ( Base ` R ) )  | 
						
						
							| 41 | 
							
								34 35 38 40
							 | 
							syl3anc | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( x ( .r ` R ) a ) e. ( Base ` R ) )  | 
						
						
							| 42 | 
							
								36
							 | 
							adantr | 
							 |-  ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) -> ( `' F " J ) C_ ( Base ` R ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							sselda | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> b e. ( Base ` R ) )  | 
						
						
							| 44 | 
							
								
							 | 
							eqid | 
							 |-  ( +g ` R ) = ( +g ` R )  | 
						
						
							| 45 | 
							
								3 44
							 | 
							ringacl | 
							 |-  ( ( R e. Ring /\ ( x ( .r ` R ) a ) e. ( Base ` R ) /\ b e. ( Base ` R ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( Base ` R ) )  | 
						
						
							| 46 | 
							
								34 41 43 45
							 | 
							syl3anc | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( Base ` R ) )  | 
						
						
							| 47 | 
							
								17
							 | 
							ad4antr | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> F e. ( R GrpHom S ) )  | 
						
						
							| 48 | 
							
								
							 | 
							eqid | 
							 |-  ( +g ` S ) = ( +g ` S )  | 
						
						
							| 49 | 
							
								3 44 48
							 | 
							ghmlin | 
							 |-  ( ( F e. ( R GrpHom S ) /\ ( x ( .r ` R ) a ) e. ( Base ` R ) /\ b e. ( Base ` R ) ) -> ( F ` ( ( x ( .r ` R ) a ) ( +g ` R ) b ) ) = ( ( F ` ( x ( .r ` R ) a ) ) ( +g ` S ) ( F ` b ) ) )  | 
						
						
							| 50 | 
							
								47 41 43 49
							 | 
							syl3anc | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` ( ( x ( .r ` R ) a ) ( +g ` R ) b ) ) = ( ( F ` ( x ( .r ` R ) a ) ) ( +g ` S ) ( F ` b ) ) )  | 
						
						
							| 51 | 
							
								
							 | 
							simp-4l | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> F e. ( R RingHom S ) )  | 
						
						
							| 52 | 
							
								51 23
							 | 
							syl | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> S e. Ring )  | 
						
						
							| 53 | 
							
								
							 | 
							simpr | 
							 |-  ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> J e. ( LIdeal ` S ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> J e. ( LIdeal ` S ) )  | 
						
						
							| 55 | 
							
								
							 | 
							eqid | 
							 |-  ( .r ` S ) = ( .r ` S )  | 
						
						
							| 56 | 
							
								3 39 55
							 | 
							rhmmul | 
							 |-  ( ( F e. ( R RingHom S ) /\ x e. ( Base ` R ) /\ a e. ( Base ` R ) ) -> ( F ` ( x ( .r ` R ) a ) ) = ( ( F ` x ) ( .r ` S ) ( F ` a ) ) )  | 
						
						
							| 57 | 
							
								51 35 38 56
							 | 
							syl3anc | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` ( x ( .r ` R ) a ) ) = ( ( F ` x ) ( .r ` S ) ( F ` a ) ) )  | 
						
						
							| 58 | 
							
								8
							 | 
							ffvelcdmda | 
							 |-  ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) -> ( F ` x ) e. ( Base ` S ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` x ) e. ( Base ` S ) )  | 
						
						
							| 60 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> a e. ( `' F " J ) )  | 
						
						
							| 61 | 
							
								
							 | 
							elpreima | 
							 |-  ( F Fn ( Base ` R ) -> ( a e. ( `' F " J ) <-> ( a e. ( Base ` R ) /\ ( F ` a ) e. J ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							simplbda | 
							 |-  ( ( F Fn ( Base ` R ) /\ a e. ( `' F " J ) ) -> ( F ` a ) e. J )  | 
						
						
							| 63 | 
							
								33 60 62
							 | 
							syl2anc | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` a ) e. J )  | 
						
						
							| 64 | 
							
								24 4 55
							 | 
							lidlmcl | 
							 |-  ( ( ( S e. Ring /\ J e. ( LIdeal ` S ) ) /\ ( ( F ` x ) e. ( Base ` S ) /\ ( F ` a ) e. J ) ) -> ( ( F ` x ) ( .r ` S ) ( F ` a ) ) e. J )  | 
						
						
							| 65 | 
							
								52 54 59 63 64
							 | 
							syl22anc | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( ( F ` x ) ( .r ` S ) ( F ` a ) ) e. J )  | 
						
						
							| 66 | 
							
								57 65
							 | 
							eqeltrd | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` ( x ( .r ` R ) a ) ) e. J )  | 
						
						
							| 67 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> b e. ( `' F " J ) )  | 
						
						
							| 68 | 
							
								
							 | 
							elpreima | 
							 |-  ( F Fn ( Base ` R ) -> ( b e. ( `' F " J ) <-> ( b e. ( Base ` R ) /\ ( F ` b ) e. J ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							simplbda | 
							 |-  ( ( F Fn ( Base ` R ) /\ b e. ( `' F " J ) ) -> ( F ` b ) e. J )  | 
						
						
							| 70 | 
							
								33 67 69
							 | 
							syl2anc | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` b ) e. J )  | 
						
						
							| 71 | 
							
								24 48
							 | 
							lidlacl | 
							 |-  ( ( ( S e. Ring /\ J e. ( LIdeal ` S ) ) /\ ( ( F ` ( x ( .r ` R ) a ) ) e. J /\ ( F ` b ) e. J ) ) -> ( ( F ` ( x ( .r ` R ) a ) ) ( +g ` S ) ( F ` b ) ) e. J )  | 
						
						
							| 72 | 
							
								52 54 66 70 71
							 | 
							syl22anc | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( ( F ` ( x ( .r ` R ) a ) ) ( +g ` S ) ( F ` b ) ) e. J )  | 
						
						
							| 73 | 
							
								50 72
							 | 
							eqeltrd | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` ( ( x ( .r ` R ) a ) ( +g ` R ) b ) ) e. J )  | 
						
						
							| 74 | 
							
								33 46 73
							 | 
							elpreimad | 
							 |-  ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( `' F " J ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							anasss | 
							 |-  ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ ( a e. ( `' F " J ) /\ b e. ( `' F " J ) ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( `' F " J ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							ralrimivva | 
							 |-  ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) -> A. a e. ( `' F " J ) A. b e. ( `' F " J ) ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( `' F " J ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							ralrimiva | 
							 |-  ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> A. x e. ( Base ` R ) A. a e. ( `' F " J ) A. b e. ( `' F " J ) ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( `' F " J ) )  | 
						
						
							| 78 | 
							
								1 3 44 39
							 | 
							islidl | 
							 |-  ( ( `' F " J ) e. I <-> ( ( `' F " J ) C_ ( Base ` R ) /\ ( `' F " J ) =/= (/) /\ A. x e. ( Base ` R ) A. a e. ( `' F " J ) A. b e. ( `' F " J ) ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( `' F " J ) ) )  | 
						
						
							| 79 | 
							
								7 31 77 78
							 | 
							syl3anbrc | 
							 |-  ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( `' F " J ) e. I )  |