| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmpsr.p |  |-  P = ( I mPwSer R ) | 
						
							| 2 |  | rhmpsr.q |  |-  Q = ( I mPwSer S ) | 
						
							| 3 |  | rhmpsr.b |  |-  B = ( Base ` P ) | 
						
							| 4 |  | rhmpsr.f |  |-  F = ( p e. B |-> ( H o. p ) ) | 
						
							| 5 |  | rhmpsr.i |  |-  ( ph -> I e. V ) | 
						
							| 6 |  | rhmpsr.h |  |-  ( ph -> H e. ( R RingHom S ) ) | 
						
							| 7 |  | eqid |  |-  ( 1r ` P ) = ( 1r ` P ) | 
						
							| 8 |  | eqid |  |-  ( 1r ` Q ) = ( 1r ` Q ) | 
						
							| 9 |  | eqid |  |-  ( .r ` P ) = ( .r ` P ) | 
						
							| 10 |  | eqid |  |-  ( .r ` Q ) = ( .r ` Q ) | 
						
							| 11 |  | rhmrcl1 |  |-  ( H e. ( R RingHom S ) -> R e. Ring ) | 
						
							| 12 | 6 11 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 13 | 1 5 12 | psrring |  |-  ( ph -> P e. Ring ) | 
						
							| 14 |  | rhmrcl2 |  |-  ( H e. ( R RingHom S ) -> S e. Ring ) | 
						
							| 15 | 6 14 | syl |  |-  ( ph -> S e. Ring ) | 
						
							| 16 | 2 5 15 | psrring |  |-  ( ph -> Q e. Ring ) | 
						
							| 17 |  | eqid |  |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 18 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 19 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 20 | 1 5 12 17 18 19 7 | psr1 |  |-  ( ph -> ( 1r ` P ) = ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) | 
						
							| 21 | 20 | coeq2d |  |-  ( ph -> ( H o. ( 1r ` P ) ) = ( H o. ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) | 
						
							| 22 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 23 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 24 | 22 23 | rhmf |  |-  ( H e. ( R RingHom S ) -> H : ( Base ` R ) --> ( Base ` S ) ) | 
						
							| 25 | 6 24 | syl |  |-  ( ph -> H : ( Base ` R ) --> ( Base ` S ) ) | 
						
							| 26 | 22 19 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 27 | 12 26 | syl |  |-  ( ph -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 28 | 22 18 | ring0cl |  |-  ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) ) | 
						
							| 29 | 12 28 | syl |  |-  ( ph -> ( 0g ` R ) e. ( Base ` R ) ) | 
						
							| 30 | 27 29 | ifcld |  |-  ( ph -> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) e. ( Base ` R ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ph /\ d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) e. ( Base ` R ) ) | 
						
							| 32 | 25 31 | cofmpt |  |-  ( ph -> ( H o. ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( H ` if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) | 
						
							| 33 |  | fvif |  |-  ( H ` if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) = if ( d = ( I X. { 0 } ) , ( H ` ( 1r ` R ) ) , ( H ` ( 0g ` R ) ) ) | 
						
							| 34 |  | eqid |  |-  ( 1r ` S ) = ( 1r ` S ) | 
						
							| 35 | 19 34 | rhm1 |  |-  ( H e. ( R RingHom S ) -> ( H ` ( 1r ` R ) ) = ( 1r ` S ) ) | 
						
							| 36 | 6 35 | syl |  |-  ( ph -> ( H ` ( 1r ` R ) ) = ( 1r ` S ) ) | 
						
							| 37 |  | rhmghm |  |-  ( H e. ( R RingHom S ) -> H e. ( R GrpHom S ) ) | 
						
							| 38 |  | eqid |  |-  ( 0g ` S ) = ( 0g ` S ) | 
						
							| 39 | 18 38 | ghmid |  |-  ( H e. ( R GrpHom S ) -> ( H ` ( 0g ` R ) ) = ( 0g ` S ) ) | 
						
							| 40 | 6 37 39 | 3syl |  |-  ( ph -> ( H ` ( 0g ` R ) ) = ( 0g ` S ) ) | 
						
							| 41 | 36 40 | ifeq12d |  |-  ( ph -> if ( d = ( I X. { 0 } ) , ( H ` ( 1r ` R ) ) , ( H ` ( 0g ` R ) ) ) = if ( d = ( I X. { 0 } ) , ( 1r ` S ) , ( 0g ` S ) ) ) | 
						
							| 42 | 33 41 | eqtrid |  |-  ( ph -> ( H ` if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) = if ( d = ( I X. { 0 } ) , ( 1r ` S ) , ( 0g ` S ) ) ) | 
						
							| 43 | 42 | mpteq2dv |  |-  ( ph -> ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( H ` if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( d = ( I X. { 0 } ) , ( 1r ` S ) , ( 0g ` S ) ) ) ) | 
						
							| 44 | 21 32 43 | 3eqtrd |  |-  ( ph -> ( H o. ( 1r ` P ) ) = ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( d = ( I X. { 0 } ) , ( 1r ` S ) , ( 0g ` S ) ) ) ) | 
						
							| 45 |  | coeq2 |  |-  ( p = ( 1r ` P ) -> ( H o. p ) = ( H o. ( 1r ` P ) ) ) | 
						
							| 46 | 3 7 | ringidcl |  |-  ( P e. Ring -> ( 1r ` P ) e. B ) | 
						
							| 47 | 13 46 | syl |  |-  ( ph -> ( 1r ` P ) e. B ) | 
						
							| 48 | 6 47 | coexd |  |-  ( ph -> ( H o. ( 1r ` P ) ) e. _V ) | 
						
							| 49 | 4 45 47 48 | fvmptd3 |  |-  ( ph -> ( F ` ( 1r ` P ) ) = ( H o. ( 1r ` P ) ) ) | 
						
							| 50 | 2 5 15 17 38 34 8 | psr1 |  |-  ( ph -> ( 1r ` Q ) = ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( d = ( I X. { 0 } ) , ( 1r ` S ) , ( 0g ` S ) ) ) ) | 
						
							| 51 | 44 49 50 | 3eqtr4d |  |-  ( ph -> ( F ` ( 1r ` P ) ) = ( 1r ` Q ) ) | 
						
							| 52 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 53 | 6 | adantr |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> H e. ( R RingHom S ) ) | 
						
							| 54 |  | simprl |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> x e. B ) | 
						
							| 55 |  | simprr |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> y e. B ) | 
						
							| 56 | 1 2 3 52 9 10 53 54 55 | rhmcomulpsr |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( H o. ( x ( .r ` P ) y ) ) = ( ( H o. x ) ( .r ` Q ) ( H o. y ) ) ) | 
						
							| 57 |  | coeq2 |  |-  ( p = ( x ( .r ` P ) y ) -> ( H o. p ) = ( H o. ( x ( .r ` P ) y ) ) ) | 
						
							| 58 | 13 | adantr |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> P e. Ring ) | 
						
							| 59 | 3 9 58 54 55 | ringcld |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` P ) y ) e. B ) | 
						
							| 60 | 53 59 | coexd |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( H o. ( x ( .r ` P ) y ) ) e. _V ) | 
						
							| 61 | 4 57 59 60 | fvmptd3 |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x ( .r ` P ) y ) ) = ( H o. ( x ( .r ` P ) y ) ) ) | 
						
							| 62 |  | coeq2 |  |-  ( p = x -> ( H o. p ) = ( H o. x ) ) | 
						
							| 63 | 53 54 | coexd |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( H o. x ) e. _V ) | 
						
							| 64 | 4 62 54 63 | fvmptd3 |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` x ) = ( H o. x ) ) | 
						
							| 65 |  | coeq2 |  |-  ( p = y -> ( H o. p ) = ( H o. y ) ) | 
						
							| 66 | 53 55 | coexd |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( H o. y ) e. _V ) | 
						
							| 67 | 4 65 55 66 | fvmptd3 |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` y ) = ( H o. y ) ) | 
						
							| 68 | 64 67 | oveq12d |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( F ` x ) ( .r ` Q ) ( F ` y ) ) = ( ( H o. x ) ( .r ` Q ) ( H o. y ) ) ) | 
						
							| 69 | 56 61 68 | 3eqtr4d |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x ( .r ` P ) y ) ) = ( ( F ` x ) ( .r ` Q ) ( F ` y ) ) ) | 
						
							| 70 |  | eqid |  |-  ( +g ` P ) = ( +g ` P ) | 
						
							| 71 |  | eqid |  |-  ( +g ` Q ) = ( +g ` Q ) | 
						
							| 72 |  | ghmmhm |  |-  ( H e. ( R GrpHom S ) -> H e. ( R MndHom S ) ) | 
						
							| 73 | 6 37 72 | 3syl |  |-  ( ph -> H e. ( R MndHom S ) ) | 
						
							| 74 | 73 | adantr |  |-  ( ( ph /\ p e. B ) -> H e. ( R MndHom S ) ) | 
						
							| 75 |  | simpr |  |-  ( ( ph /\ p e. B ) -> p e. B ) | 
						
							| 76 | 1 2 3 52 74 75 | mhmcopsr |  |-  ( ( ph /\ p e. B ) -> ( H o. p ) e. ( Base ` Q ) ) | 
						
							| 77 | 76 4 | fmptd |  |-  ( ph -> F : B --> ( Base ` Q ) ) | 
						
							| 78 | 53 37 72 | 3syl |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> H e. ( R MndHom S ) ) | 
						
							| 79 | 1 2 3 52 70 71 78 54 55 | mhmcoaddpsr |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( H o. ( x ( +g ` P ) y ) ) = ( ( H o. x ) ( +g ` Q ) ( H o. y ) ) ) | 
						
							| 80 |  | coeq2 |  |-  ( p = ( x ( +g ` P ) y ) -> ( H o. p ) = ( H o. ( x ( +g ` P ) y ) ) ) | 
						
							| 81 | 58 | ringgrpd |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> P e. Grp ) | 
						
							| 82 | 3 70 81 54 55 | grpcld |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` P ) y ) e. B ) | 
						
							| 83 | 53 82 | coexd |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( H o. ( x ( +g ` P ) y ) ) e. _V ) | 
						
							| 84 | 4 80 82 83 | fvmptd3 |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x ( +g ` P ) y ) ) = ( H o. ( x ( +g ` P ) y ) ) ) | 
						
							| 85 | 64 67 | oveq12d |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( F ` x ) ( +g ` Q ) ( F ` y ) ) = ( ( H o. x ) ( +g ` Q ) ( H o. y ) ) ) | 
						
							| 86 | 79 84 85 | 3eqtr4d |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x ( +g ` P ) y ) ) = ( ( F ` x ) ( +g ` Q ) ( F ` y ) ) ) | 
						
							| 87 | 3 7 8 9 10 13 16 51 69 52 70 71 77 86 | isrhmd |  |-  ( ph -> F e. ( P RingHom Q ) ) |