Metamath Proof Explorer


Theorem rhmqusker

Description: A surjective ring homomorphism F from G to H induces an isomorphism J from Q to H , where Q is the factor group of G by F 's kernel K . (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses rhmqusker.1
|- .0. = ( 0g ` H )
rhmqusker.f
|- ( ph -> F e. ( G RingHom H ) )
rhmqusker.k
|- K = ( `' F " { .0. } )
rhmqusker.q
|- Q = ( G /s ( G ~QG K ) )
rhmqusker.s
|- ( ph -> ran F = ( Base ` H ) )
rhmqusker.2
|- ( ph -> G e. CRing )
rhmqusker.j
|- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) )
Assertion rhmqusker
|- ( ph -> J e. ( Q RingIso H ) )

Proof

Step Hyp Ref Expression
1 rhmqusker.1
 |-  .0. = ( 0g ` H )
2 rhmqusker.f
 |-  ( ph -> F e. ( G RingHom H ) )
3 rhmqusker.k
 |-  K = ( `' F " { .0. } )
4 rhmqusker.q
 |-  Q = ( G /s ( G ~QG K ) )
5 rhmqusker.s
 |-  ( ph -> ran F = ( Base ` H ) )
6 rhmqusker.2
 |-  ( ph -> G e. CRing )
7 rhmqusker.j
 |-  J = ( q e. ( Base ` Q ) |-> U. ( F " q ) )
8 1 2 3 4 7 6 rhmquskerlem
 |-  ( ph -> J e. ( Q RingHom H ) )
9 rhmghm
 |-  ( F e. ( G RingHom H ) -> F e. ( G GrpHom H ) )
10 2 9 syl
 |-  ( ph -> F e. ( G GrpHom H ) )
11 1 10 3 4 7 5 ghmqusker
 |-  ( ph -> J e. ( Q GrpIso H ) )
12 eqid
 |-  ( Base ` Q ) = ( Base ` Q )
13 eqid
 |-  ( Base ` H ) = ( Base ` H )
14 12 13 gimf1o
 |-  ( J e. ( Q GrpIso H ) -> J : ( Base ` Q ) -1-1-onto-> ( Base ` H ) )
15 11 14 syl
 |-  ( ph -> J : ( Base ` Q ) -1-1-onto-> ( Base ` H ) )
16 12 13 isrim
 |-  ( J e. ( Q RingIso H ) <-> ( J e. ( Q RingHom H ) /\ J : ( Base ` Q ) -1-1-onto-> ( Base ` H ) ) )
17 8 15 16 sylanbrc
 |-  ( ph -> J e. ( Q RingIso H ) )