| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmresfn.b |  |-  ( ph -> B = ( U i^i Ring ) ) | 
						
							| 2 |  | rhmresfn.h |  |-  ( ph -> H = ( RingHom |` ( B X. B ) ) ) | 
						
							| 3 |  | rhmfn |  |-  RingHom Fn ( Ring X. Ring ) | 
						
							| 4 |  | inss2 |  |-  ( U i^i Ring ) C_ Ring | 
						
							| 5 | 1 4 | eqsstrdi |  |-  ( ph -> B C_ Ring ) | 
						
							| 6 |  | xpss12 |  |-  ( ( B C_ Ring /\ B C_ Ring ) -> ( B X. B ) C_ ( Ring X. Ring ) ) | 
						
							| 7 | 5 5 6 | syl2anc |  |-  ( ph -> ( B X. B ) C_ ( Ring X. Ring ) ) | 
						
							| 8 |  | fnssres |  |-  ( ( RingHom Fn ( Ring X. Ring ) /\ ( B X. B ) C_ ( Ring X. Ring ) ) -> ( RingHom |` ( B X. B ) ) Fn ( B X. B ) ) | 
						
							| 9 | 3 7 8 | sylancr |  |-  ( ph -> ( RingHom |` ( B X. B ) ) Fn ( B X. B ) ) | 
						
							| 10 | 2 | fneq1d |  |-  ( ph -> ( H Fn ( B X. B ) <-> ( RingHom |` ( B X. B ) ) Fn ( B X. B ) ) ) | 
						
							| 11 | 9 10 | mpbird |  |-  ( ph -> H Fn ( B X. B ) ) |