| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmsscmap.u |  |-  ( ph -> U e. V ) | 
						
							| 2 |  | rhmsscmap.r |  |-  ( ph -> R = ( Ring i^i U ) ) | 
						
							| 3 |  | inss2 |  |-  ( Ring i^i U ) C_ U | 
						
							| 4 | 2 3 | eqsstrdi |  |-  ( ph -> R C_ U ) | 
						
							| 5 |  | eqid |  |-  ( Base ` a ) = ( Base ` a ) | 
						
							| 6 |  | eqid |  |-  ( Base ` b ) = ( Base ` b ) | 
						
							| 7 | 5 6 | rhmf |  |-  ( h e. ( a RingHom b ) -> h : ( Base ` a ) --> ( Base ` b ) ) | 
						
							| 8 |  | simpr |  |-  ( ( ( ph /\ ( a e. R /\ b e. R ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> h : ( Base ` a ) --> ( Base ` b ) ) | 
						
							| 9 |  | fvex |  |-  ( Base ` b ) e. _V | 
						
							| 10 |  | fvex |  |-  ( Base ` a ) e. _V | 
						
							| 11 | 9 10 | pm3.2i |  |-  ( ( Base ` b ) e. _V /\ ( Base ` a ) e. _V ) | 
						
							| 12 |  | elmapg |  |-  ( ( ( Base ` b ) e. _V /\ ( Base ` a ) e. _V ) -> ( h e. ( ( Base ` b ) ^m ( Base ` a ) ) <-> h : ( Base ` a ) --> ( Base ` b ) ) ) | 
						
							| 13 | 11 12 | mp1i |  |-  ( ( ( ph /\ ( a e. R /\ b e. R ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> ( h e. ( ( Base ` b ) ^m ( Base ` a ) ) <-> h : ( Base ` a ) --> ( Base ` b ) ) ) | 
						
							| 14 | 8 13 | mpbird |  |-  ( ( ( ph /\ ( a e. R /\ b e. R ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> h e. ( ( Base ` b ) ^m ( Base ` a ) ) ) | 
						
							| 15 | 14 | ex |  |-  ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( h : ( Base ` a ) --> ( Base ` b ) -> h e. ( ( Base ` b ) ^m ( Base ` a ) ) ) ) | 
						
							| 16 | 7 15 | syl5 |  |-  ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( h e. ( a RingHom b ) -> h e. ( ( Base ` b ) ^m ( Base ` a ) ) ) ) | 
						
							| 17 | 16 | ssrdv |  |-  ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( a RingHom b ) C_ ( ( Base ` b ) ^m ( Base ` a ) ) ) | 
						
							| 18 |  | ovres |  |-  ( ( a e. R /\ b e. R ) -> ( a ( RingHom |` ( R X. R ) ) b ) = ( a RingHom b ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( a ( RingHom |` ( R X. R ) ) b ) = ( a RingHom b ) ) | 
						
							| 20 |  | eqidd |  |-  ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) | 
						
							| 21 |  | fveq2 |  |-  ( y = b -> ( Base ` y ) = ( Base ` b ) ) | 
						
							| 22 |  | fveq2 |  |-  ( x = a -> ( Base ` x ) = ( Base ` a ) ) | 
						
							| 23 | 21 22 | oveqan12rd |  |-  ( ( x = a /\ y = b ) -> ( ( Base ` y ) ^m ( Base ` x ) ) = ( ( Base ` b ) ^m ( Base ` a ) ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ( ph /\ ( a e. R /\ b e. R ) ) /\ ( x = a /\ y = b ) ) -> ( ( Base ` y ) ^m ( Base ` x ) ) = ( ( Base ` b ) ^m ( Base ` a ) ) ) | 
						
							| 25 | 4 | sseld |  |-  ( ph -> ( a e. R -> a e. U ) ) | 
						
							| 26 | 25 | com12 |  |-  ( a e. R -> ( ph -> a e. U ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( a e. R /\ b e. R ) -> ( ph -> a e. U ) ) | 
						
							| 28 | 27 | impcom |  |-  ( ( ph /\ ( a e. R /\ b e. R ) ) -> a e. U ) | 
						
							| 29 | 4 | sseld |  |-  ( ph -> ( b e. R -> b e. U ) ) | 
						
							| 30 | 29 | com12 |  |-  ( b e. R -> ( ph -> b e. U ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( a e. R /\ b e. R ) -> ( ph -> b e. U ) ) | 
						
							| 32 | 31 | impcom |  |-  ( ( ph /\ ( a e. R /\ b e. R ) ) -> b e. U ) | 
						
							| 33 |  | ovexd |  |-  ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( ( Base ` b ) ^m ( Base ` a ) ) e. _V ) | 
						
							| 34 | 20 24 28 32 33 | ovmpod |  |-  ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( a ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) b ) = ( ( Base ` b ) ^m ( Base ` a ) ) ) | 
						
							| 35 | 17 19 34 | 3sstr4d |  |-  ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( a ( RingHom |` ( R X. R ) ) b ) C_ ( a ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) b ) ) | 
						
							| 36 | 35 | ralrimivva |  |-  ( ph -> A. a e. R A. b e. R ( a ( RingHom |` ( R X. R ) ) b ) C_ ( a ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) b ) ) | 
						
							| 37 |  | rhmfn |  |-  RingHom Fn ( Ring X. Ring ) | 
						
							| 38 | 37 | a1i |  |-  ( ph -> RingHom Fn ( Ring X. Ring ) ) | 
						
							| 39 |  | inss1 |  |-  ( Ring i^i U ) C_ Ring | 
						
							| 40 | 2 39 | eqsstrdi |  |-  ( ph -> R C_ Ring ) | 
						
							| 41 |  | xpss12 |  |-  ( ( R C_ Ring /\ R C_ Ring ) -> ( R X. R ) C_ ( Ring X. Ring ) ) | 
						
							| 42 | 40 40 41 | syl2anc |  |-  ( ph -> ( R X. R ) C_ ( Ring X. Ring ) ) | 
						
							| 43 |  | fnssres |  |-  ( ( RingHom Fn ( Ring X. Ring ) /\ ( R X. R ) C_ ( Ring X. Ring ) ) -> ( RingHom |` ( R X. R ) ) Fn ( R X. R ) ) | 
						
							| 44 | 38 42 43 | syl2anc |  |-  ( ph -> ( RingHom |` ( R X. R ) ) Fn ( R X. R ) ) | 
						
							| 45 |  | eqid |  |-  ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) | 
						
							| 46 |  | ovex |  |-  ( ( Base ` y ) ^m ( Base ` x ) ) e. _V | 
						
							| 47 | 45 46 | fnmpoi |  |-  ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) Fn ( U X. U ) | 
						
							| 48 | 47 | a1i |  |-  ( ph -> ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) Fn ( U X. U ) ) | 
						
							| 49 |  | elex |  |-  ( U e. V -> U e. _V ) | 
						
							| 50 | 1 49 | syl |  |-  ( ph -> U e. _V ) | 
						
							| 51 | 44 48 50 | isssc |  |-  ( ph -> ( ( RingHom |` ( R X. R ) ) C_cat ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) <-> ( R C_ U /\ A. a e. R A. b e. R ( a ( RingHom |` ( R X. R ) ) b ) C_ ( a ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) b ) ) ) ) | 
						
							| 52 | 4 36 51 | mpbir2and |  |-  ( ph -> ( RingHom |` ( R X. R ) ) C_cat ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |