| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmsscrnghm.u |  |-  ( ph -> U e. V ) | 
						
							| 2 |  | rhmsscrnghm.r |  |-  ( ph -> R = ( Ring i^i U ) ) | 
						
							| 3 |  | rhmsscrnghm.s |  |-  ( ph -> S = ( Rng i^i U ) ) | 
						
							| 4 |  | ringrng |  |-  ( r e. Ring -> r e. Rng ) | 
						
							| 5 | 4 | a1i |  |-  ( ph -> ( r e. Ring -> r e. Rng ) ) | 
						
							| 6 | 5 | ssrdv |  |-  ( ph -> Ring C_ Rng ) | 
						
							| 7 | 6 | ssrind |  |-  ( ph -> ( Ring i^i U ) C_ ( Rng i^i U ) ) | 
						
							| 8 | 7 2 3 | 3sstr4d |  |-  ( ph -> R C_ S ) | 
						
							| 9 |  | ovres |  |-  ( ( x e. R /\ y e. R ) -> ( x ( RingHom |` ( R X. R ) ) y ) = ( x RingHom y ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( x ( RingHom |` ( R X. R ) ) y ) = ( x RingHom y ) ) | 
						
							| 11 | 10 | eleq2d |  |-  ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( h e. ( x ( RingHom |` ( R X. R ) ) y ) <-> h e. ( x RingHom y ) ) ) | 
						
							| 12 |  | rhmisrnghm |  |-  ( h e. ( x RingHom y ) -> h e. ( x RngHom y ) ) | 
						
							| 13 | 8 | sseld |  |-  ( ph -> ( x e. R -> x e. S ) ) | 
						
							| 14 | 8 | sseld |  |-  ( ph -> ( y e. R -> y e. S ) ) | 
						
							| 15 | 13 14 | anim12d |  |-  ( ph -> ( ( x e. R /\ y e. R ) -> ( x e. S /\ y e. S ) ) ) | 
						
							| 16 | 15 | imp |  |-  ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( x e. S /\ y e. S ) ) | 
						
							| 17 |  | ovres |  |-  ( ( x e. S /\ y e. S ) -> ( x ( RngHom |` ( S X. S ) ) y ) = ( x RngHom y ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( x ( RngHom |` ( S X. S ) ) y ) = ( x RngHom y ) ) | 
						
							| 19 | 18 | eleq2d |  |-  ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( h e. ( x ( RngHom |` ( S X. S ) ) y ) <-> h e. ( x RngHom y ) ) ) | 
						
							| 20 | 12 19 | imbitrrid |  |-  ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( h e. ( x RingHom y ) -> h e. ( x ( RngHom |` ( S X. S ) ) y ) ) ) | 
						
							| 21 | 11 20 | sylbid |  |-  ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( h e. ( x ( RingHom |` ( R X. R ) ) y ) -> h e. ( x ( RngHom |` ( S X. S ) ) y ) ) ) | 
						
							| 22 | 21 | ssrdv |  |-  ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( x ( RingHom |` ( R X. R ) ) y ) C_ ( x ( RngHom |` ( S X. S ) ) y ) ) | 
						
							| 23 | 22 | ralrimivva |  |-  ( ph -> A. x e. R A. y e. R ( x ( RingHom |` ( R X. R ) ) y ) C_ ( x ( RngHom |` ( S X. S ) ) y ) ) | 
						
							| 24 |  | inss1 |  |-  ( Ring i^i U ) C_ Ring | 
						
							| 25 | 2 24 | eqsstrdi |  |-  ( ph -> R C_ Ring ) | 
						
							| 26 |  | xpss12 |  |-  ( ( R C_ Ring /\ R C_ Ring ) -> ( R X. R ) C_ ( Ring X. Ring ) ) | 
						
							| 27 | 25 25 26 | syl2anc |  |-  ( ph -> ( R X. R ) C_ ( Ring X. Ring ) ) | 
						
							| 28 |  | rhmfn |  |-  RingHom Fn ( Ring X. Ring ) | 
						
							| 29 |  | fnssresb |  |-  ( RingHom Fn ( Ring X. Ring ) -> ( ( RingHom |` ( R X. R ) ) Fn ( R X. R ) <-> ( R X. R ) C_ ( Ring X. Ring ) ) ) | 
						
							| 30 | 28 29 | mp1i |  |-  ( ph -> ( ( RingHom |` ( R X. R ) ) Fn ( R X. R ) <-> ( R X. R ) C_ ( Ring X. Ring ) ) ) | 
						
							| 31 | 27 30 | mpbird |  |-  ( ph -> ( RingHom |` ( R X. R ) ) Fn ( R X. R ) ) | 
						
							| 32 |  | inss1 |  |-  ( Rng i^i U ) C_ Rng | 
						
							| 33 | 3 32 | eqsstrdi |  |-  ( ph -> S C_ Rng ) | 
						
							| 34 |  | xpss12 |  |-  ( ( S C_ Rng /\ S C_ Rng ) -> ( S X. S ) C_ ( Rng X. Rng ) ) | 
						
							| 35 | 33 33 34 | syl2anc |  |-  ( ph -> ( S X. S ) C_ ( Rng X. Rng ) ) | 
						
							| 36 |  | rnghmfn |  |-  RngHom Fn ( Rng X. Rng ) | 
						
							| 37 |  | fnssresb |  |-  ( RngHom Fn ( Rng X. Rng ) -> ( ( RngHom |` ( S X. S ) ) Fn ( S X. S ) <-> ( S X. S ) C_ ( Rng X. Rng ) ) ) | 
						
							| 38 | 36 37 | mp1i |  |-  ( ph -> ( ( RngHom |` ( S X. S ) ) Fn ( S X. S ) <-> ( S X. S ) C_ ( Rng X. Rng ) ) ) | 
						
							| 39 | 35 38 | mpbird |  |-  ( ph -> ( RngHom |` ( S X. S ) ) Fn ( S X. S ) ) | 
						
							| 40 |  | incom |  |-  ( Rng i^i U ) = ( U i^i Rng ) | 
						
							| 41 |  | inex1g |  |-  ( U e. V -> ( U i^i Rng ) e. _V ) | 
						
							| 42 | 40 41 | eqeltrid |  |-  ( U e. V -> ( Rng i^i U ) e. _V ) | 
						
							| 43 | 1 42 | syl |  |-  ( ph -> ( Rng i^i U ) e. _V ) | 
						
							| 44 | 3 43 | eqeltrd |  |-  ( ph -> S e. _V ) | 
						
							| 45 | 31 39 44 | isssc |  |-  ( ph -> ( ( RingHom |` ( R X. R ) ) C_cat ( RngHom |` ( S X. S ) ) <-> ( R C_ S /\ A. x e. R A. y e. R ( x ( RingHom |` ( R X. R ) ) y ) C_ ( x ( RngHom |` ( S X. S ) ) y ) ) ) ) | 
						
							| 46 | 8 23 45 | mpbir2and |  |-  ( ph -> ( RingHom |` ( R X. R ) ) C_cat ( RngHom |` ( S X. S ) ) ) |