| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmrcl1 |
|- ( F e. ( R RingHom S ) -> R e. Ring ) |
| 2 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
| 3 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
| 4 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 5 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 6 |
2 3 4 5
|
unitlinv |
|- ( ( R e. Ring /\ A e. ( Unit ` R ) ) -> ( ( ( invr ` R ) ` A ) ( .r ` R ) A ) = ( 1r ` R ) ) |
| 7 |
1 6
|
sylan |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( ( invr ` R ) ` A ) ( .r ` R ) A ) = ( 1r ` R ) ) |
| 8 |
7
|
fveq2d |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` ( ( ( invr ` R ) ` A ) ( .r ` R ) A ) ) = ( F ` ( 1r ` R ) ) ) |
| 9 |
|
simpl |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> F e. ( R RingHom S ) ) |
| 10 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 11 |
10 2
|
unitss |
|- ( Unit ` R ) C_ ( Base ` R ) |
| 12 |
2 3
|
unitinvcl |
|- ( ( R e. Ring /\ A e. ( Unit ` R ) ) -> ( ( invr ` R ) ` A ) e. ( Unit ` R ) ) |
| 13 |
1 12
|
sylan |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( invr ` R ) ` A ) e. ( Unit ` R ) ) |
| 14 |
11 13
|
sselid |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( invr ` R ) ` A ) e. ( Base ` R ) ) |
| 15 |
|
simpr |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> A e. ( Unit ` R ) ) |
| 16 |
11 15
|
sselid |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> A e. ( Base ` R ) ) |
| 17 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 18 |
10 4 17
|
rhmmul |
|- ( ( F e. ( R RingHom S ) /\ ( ( invr ` R ) ` A ) e. ( Base ` R ) /\ A e. ( Base ` R ) ) -> ( F ` ( ( ( invr ` R ) ` A ) ( .r ` R ) A ) ) = ( ( F ` ( ( invr ` R ) ` A ) ) ( .r ` S ) ( F ` A ) ) ) |
| 19 |
9 14 16 18
|
syl3anc |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` ( ( ( invr ` R ) ` A ) ( .r ` R ) A ) ) = ( ( F ` ( ( invr ` R ) ` A ) ) ( .r ` S ) ( F ` A ) ) ) |
| 20 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
| 21 |
5 20
|
rhm1 |
|- ( F e. ( R RingHom S ) -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 22 |
21
|
adantr |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 23 |
8 19 22
|
3eqtr3d |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( F ` ( ( invr ` R ) ` A ) ) ( .r ` S ) ( F ` A ) ) = ( 1r ` S ) ) |
| 24 |
|
rhmrcl2 |
|- ( F e. ( R RingHom S ) -> S e. Ring ) |
| 25 |
24
|
adantr |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> S e. Ring ) |
| 26 |
|
elrhmunit |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` A ) e. ( Unit ` S ) ) |
| 27 |
|
eqid |
|- ( Unit ` S ) = ( Unit ` S ) |
| 28 |
|
eqid |
|- ( invr ` S ) = ( invr ` S ) |
| 29 |
27 28 17 20
|
unitlinv |
|- ( ( S e. Ring /\ ( F ` A ) e. ( Unit ` S ) ) -> ( ( ( invr ` S ) ` ( F ` A ) ) ( .r ` S ) ( F ` A ) ) = ( 1r ` S ) ) |
| 30 |
25 26 29
|
syl2anc |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( ( invr ` S ) ` ( F ` A ) ) ( .r ` S ) ( F ` A ) ) = ( 1r ` S ) ) |
| 31 |
23 30
|
eqtr4d |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( F ` ( ( invr ` R ) ` A ) ) ( .r ` S ) ( F ` A ) ) = ( ( ( invr ` S ) ` ( F ` A ) ) ( .r ` S ) ( F ` A ) ) ) |
| 32 |
|
eqid |
|- ( ( mulGrp ` S ) |`s ( Unit ` S ) ) = ( ( mulGrp ` S ) |`s ( Unit ` S ) ) |
| 33 |
27 32
|
unitgrp |
|- ( S e. Ring -> ( ( mulGrp ` S ) |`s ( Unit ` S ) ) e. Grp ) |
| 34 |
24 33
|
syl |
|- ( F e. ( R RingHom S ) -> ( ( mulGrp ` S ) |`s ( Unit ` S ) ) e. Grp ) |
| 35 |
34
|
adantr |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( mulGrp ` S ) |`s ( Unit ` S ) ) e. Grp ) |
| 36 |
|
elrhmunit |
|- ( ( F e. ( R RingHom S ) /\ ( ( invr ` R ) ` A ) e. ( Unit ` R ) ) -> ( F ` ( ( invr ` R ) ` A ) ) e. ( Unit ` S ) ) |
| 37 |
13 36
|
syldan |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` ( ( invr ` R ) ` A ) ) e. ( Unit ` S ) ) |
| 38 |
27 28
|
unitinvcl |
|- ( ( S e. Ring /\ ( F ` A ) e. ( Unit ` S ) ) -> ( ( invr ` S ) ` ( F ` A ) ) e. ( Unit ` S ) ) |
| 39 |
25 26 38
|
syl2anc |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( invr ` S ) ` ( F ` A ) ) e. ( Unit ` S ) ) |
| 40 |
27 32
|
unitgrpbas |
|- ( Unit ` S ) = ( Base ` ( ( mulGrp ` S ) |`s ( Unit ` S ) ) ) |
| 41 |
|
fvex |
|- ( Unit ` S ) e. _V |
| 42 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
| 43 |
42 17
|
mgpplusg |
|- ( .r ` S ) = ( +g ` ( mulGrp ` S ) ) |
| 44 |
32 43
|
ressplusg |
|- ( ( Unit ` S ) e. _V -> ( .r ` S ) = ( +g ` ( ( mulGrp ` S ) |`s ( Unit ` S ) ) ) ) |
| 45 |
41 44
|
ax-mp |
|- ( .r ` S ) = ( +g ` ( ( mulGrp ` S ) |`s ( Unit ` S ) ) ) |
| 46 |
40 45
|
grprcan |
|- ( ( ( ( mulGrp ` S ) |`s ( Unit ` S ) ) e. Grp /\ ( ( F ` ( ( invr ` R ) ` A ) ) e. ( Unit ` S ) /\ ( ( invr ` S ) ` ( F ` A ) ) e. ( Unit ` S ) /\ ( F ` A ) e. ( Unit ` S ) ) ) -> ( ( ( F ` ( ( invr ` R ) ` A ) ) ( .r ` S ) ( F ` A ) ) = ( ( ( invr ` S ) ` ( F ` A ) ) ( .r ` S ) ( F ` A ) ) <-> ( F ` ( ( invr ` R ) ` A ) ) = ( ( invr ` S ) ` ( F ` A ) ) ) ) |
| 47 |
35 37 39 26 46
|
syl13anc |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( ( F ` ( ( invr ` R ) ` A ) ) ( .r ` S ) ( F ` A ) ) = ( ( ( invr ` S ) ` ( F ` A ) ) ( .r ` S ) ( F ` A ) ) <-> ( F ` ( ( invr ` R ) ` A ) ) = ( ( invr ` S ) ` ( F ` A ) ) ) ) |
| 48 |
31 47
|
mpbid |
|- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` ( ( invr ` R ) ` A ) ) = ( ( invr ` S ) ` ( F ` A ) ) ) |