Description: A ring is commutative if and only if an isomorphic ring is commutative. (Contributed by SN, 10-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | riccrng | |- ( R ~=r S -> ( R e. CRing <-> S e. CRing ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riccrng1 | |- ( ( R ~=r S /\ R e. CRing ) -> S e. CRing ) |
|
2 | ricsym | |- ( R ~=r S -> S ~=r R ) |
|
3 | riccrng1 | |- ( ( S ~=r R /\ S e. CRing ) -> R e. CRing ) |
|
4 | 2 3 | sylan | |- ( ( R ~=r S /\ S e. CRing ) -> R e. CRing ) |
5 | 1 4 | impbida | |- ( R ~=r S -> ( R e. CRing <-> S e. CRing ) ) |