Description: If two rings are (ring) isomorphic, their additive groups are (group) isomorphic. (Contributed by AV, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ricgic | |- ( R ~=r S -> R ~=g S ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brric2 | |- ( R ~=r S <-> ( ( R e. Ring /\ S e. Ring ) /\ E. f f e. ( R RingIso S ) ) ) | |
| 2 | rimgim | |- ( f e. ( R RingIso S ) -> f e. ( R GrpIso S ) ) | |
| 3 | brgici | |- ( f e. ( R GrpIso S ) -> R ~=g S ) | |
| 4 | 2 3 | syl | |- ( f e. ( R RingIso S ) -> R ~=g S ) | 
| 5 | 4 | exlimiv | |- ( E. f f e. ( R RingIso S ) -> R ~=g S ) | 
| 6 | 1 5 | simplbiim | |- ( R ~=r S -> R ~=g S ) |