Description: If two rings are (ring) isomorphic, their additive groups are (group) isomorphic. (Contributed by AV, 24-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | ricgic | |- ( R ~=r S -> R ~=g S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brric2 | |- ( R ~=r S <-> ( ( R e. Ring /\ S e. Ring ) /\ E. f f e. ( R RingIso S ) ) ) |
|
2 | rimgim | |- ( f e. ( R RingIso S ) -> f e. ( R GrpIso S ) ) |
|
3 | brgici | |- ( f e. ( R GrpIso S ) -> R ~=g S ) |
|
4 | 2 3 | syl | |- ( f e. ( R RingIso S ) -> R ~=g S ) |
5 | 4 | exlimiv | |- ( E. f f e. ( R RingIso S ) -> R ~=g S ) |
6 | 1 5 | simplbiim | |- ( R ~=r S -> R ~=g S ) |