Description: The image H of a ring homomorphism F is isomorphic with the quotient ring Q over F 's kernel K . This a part of what is sometimes called the first isomorphism theorem for rings. (Contributed by Thierry Arnoux, 10-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rhmqusker.1 | |- .0. = ( 0g ` H ) |
|
rhmqusker.f | |- ( ph -> F e. ( G RingHom H ) ) |
||
rhmqusker.k | |- K = ( `' F " { .0. } ) |
||
rhmqusker.q | |- Q = ( G /s ( G ~QG K ) ) |
||
rhmqusker.s | |- ( ph -> ran F = ( Base ` H ) ) |
||
rhmqusker.2 | |- ( ph -> G e. CRing ) |
||
Assertion | ricqusker | |- ( ph -> Q ~=r H ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmqusker.1 | |- .0. = ( 0g ` H ) |
|
2 | rhmqusker.f | |- ( ph -> F e. ( G RingHom H ) ) |
|
3 | rhmqusker.k | |- K = ( `' F " { .0. } ) |
|
4 | rhmqusker.q | |- Q = ( G /s ( G ~QG K ) ) |
|
5 | rhmqusker.s | |- ( ph -> ran F = ( Base ` H ) ) |
|
6 | rhmqusker.2 | |- ( ph -> G e. CRing ) |
|
7 | imaeq2 | |- ( p = q -> ( F " p ) = ( F " q ) ) |
|
8 | 7 | unieqd | |- ( p = q -> U. ( F " p ) = U. ( F " q ) ) |
9 | 8 | cbvmptv | |- ( p e. ( Base ` Q ) |-> U. ( F " p ) ) = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
10 | 1 2 3 4 5 6 9 | rhmqusker | |- ( ph -> ( p e. ( Base ` Q ) |-> U. ( F " p ) ) e. ( Q RingIso H ) ) |
11 | brrici | |- ( ( p e. ( Base ` Q ) |-> U. ( F " p ) ) e. ( Q RingIso H ) -> Q ~=r H ) |
|
12 | 10 11 | syl | |- ( ph -> Q ~=r H ) |