Metamath Proof Explorer


Theorem ricqusker

Description: The image H of a ring homomorphism F is isomorphic with the quotient ring Q over F 's kernel K . This a part of what is sometimes called the first isomorphism theorem for rings. (Contributed by Thierry Arnoux, 10-Mar-2025)

Ref Expression
Hypotheses rhmqusker.1
|- .0. = ( 0g ` H )
rhmqusker.f
|- ( ph -> F e. ( G RingHom H ) )
rhmqusker.k
|- K = ( `' F " { .0. } )
rhmqusker.q
|- Q = ( G /s ( G ~QG K ) )
rhmqusker.s
|- ( ph -> ran F = ( Base ` H ) )
rhmqusker.2
|- ( ph -> G e. CRing )
Assertion ricqusker
|- ( ph -> Q ~=r H )

Proof

Step Hyp Ref Expression
1 rhmqusker.1
 |-  .0. = ( 0g ` H )
2 rhmqusker.f
 |-  ( ph -> F e. ( G RingHom H ) )
3 rhmqusker.k
 |-  K = ( `' F " { .0. } )
4 rhmqusker.q
 |-  Q = ( G /s ( G ~QG K ) )
5 rhmqusker.s
 |-  ( ph -> ran F = ( Base ` H ) )
6 rhmqusker.2
 |-  ( ph -> G e. CRing )
7 imaeq2
 |-  ( p = q -> ( F " p ) = ( F " q ) )
8 7 unieqd
 |-  ( p = q -> U. ( F " p ) = U. ( F " q ) )
9 8 cbvmptv
 |-  ( p e. ( Base ` Q ) |-> U. ( F " p ) ) = ( q e. ( Base ` Q ) |-> U. ( F " q ) )
10 1 2 3 4 5 6 9 rhmqusker
 |-  ( ph -> ( p e. ( Base ` Q ) |-> U. ( F " p ) ) e. ( Q RingIso H ) )
11 brrici
 |-  ( ( p e. ( Base ` Q ) |-> U. ( F " p ) ) e. ( Q RingIso H ) -> Q ~=r H )
12 10 11 syl
 |-  ( ph -> Q ~=r H )