Metamath Proof Explorer


Theorem ridl0

Description: Every ring contains a zero right ideal. (Contributed by AV, 13-Feb-2025)

Ref Expression
Hypotheses ridl0.u
|- U = ( LIdeal ` ( oppR ` R ) )
ridl0.z
|- .0. = ( 0g ` R )
Assertion ridl0
|- ( R e. Ring -> { .0. } e. U )

Proof

Step Hyp Ref Expression
1 ridl0.u
 |-  U = ( LIdeal ` ( oppR ` R ) )
2 ridl0.z
 |-  .0. = ( 0g ` R )
3 eqid
 |-  ( oppR ` R ) = ( oppR ` R )
4 3 opprring
 |-  ( R e. Ring -> ( oppR ` R ) e. Ring )
5 3 2 oppr0
 |-  .0. = ( 0g ` ( oppR ` R ) )
6 1 5 lidl0
 |-  ( ( oppR ` R ) e. Ring -> { .0. } e. U )
7 4 6 syl
 |-  ( R e. Ring -> { .0. } e. U )