| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nlelch.1 |
|- T e. LinFn |
| 2 |
|
nlelch.2 |
|- T e. ContFn |
| 3 |
|
ax-hv0cl |
|- 0h e. ~H |
| 4 |
1
|
lnfnfi |
|- T : ~H --> CC |
| 5 |
|
fveq2 |
|- ( ( _|_ ` ( null ` T ) ) = 0H -> ( _|_ ` ( _|_ ` ( null ` T ) ) ) = ( _|_ ` 0H ) ) |
| 6 |
1 2
|
nlelchi |
|- ( null ` T ) e. CH |
| 7 |
6
|
ococi |
|- ( _|_ ` ( _|_ ` ( null ` T ) ) ) = ( null ` T ) |
| 8 |
|
choc0 |
|- ( _|_ ` 0H ) = ~H |
| 9 |
5 7 8
|
3eqtr3g |
|- ( ( _|_ ` ( null ` T ) ) = 0H -> ( null ` T ) = ~H ) |
| 10 |
9
|
eleq2d |
|- ( ( _|_ ` ( null ` T ) ) = 0H -> ( v e. ( null ` T ) <-> v e. ~H ) ) |
| 11 |
10
|
biimpar |
|- ( ( ( _|_ ` ( null ` T ) ) = 0H /\ v e. ~H ) -> v e. ( null ` T ) ) |
| 12 |
|
elnlfn2 |
|- ( ( T : ~H --> CC /\ v e. ( null ` T ) ) -> ( T ` v ) = 0 ) |
| 13 |
4 11 12
|
sylancr |
|- ( ( ( _|_ ` ( null ` T ) ) = 0H /\ v e. ~H ) -> ( T ` v ) = 0 ) |
| 14 |
|
hi02 |
|- ( v e. ~H -> ( v .ih 0h ) = 0 ) |
| 15 |
14
|
adantl |
|- ( ( ( _|_ ` ( null ` T ) ) = 0H /\ v e. ~H ) -> ( v .ih 0h ) = 0 ) |
| 16 |
13 15
|
eqtr4d |
|- ( ( ( _|_ ` ( null ` T ) ) = 0H /\ v e. ~H ) -> ( T ` v ) = ( v .ih 0h ) ) |
| 17 |
16
|
ralrimiva |
|- ( ( _|_ ` ( null ` T ) ) = 0H -> A. v e. ~H ( T ` v ) = ( v .ih 0h ) ) |
| 18 |
|
oveq2 |
|- ( w = 0h -> ( v .ih w ) = ( v .ih 0h ) ) |
| 19 |
18
|
eqeq2d |
|- ( w = 0h -> ( ( T ` v ) = ( v .ih w ) <-> ( T ` v ) = ( v .ih 0h ) ) ) |
| 20 |
19
|
ralbidv |
|- ( w = 0h -> ( A. v e. ~H ( T ` v ) = ( v .ih w ) <-> A. v e. ~H ( T ` v ) = ( v .ih 0h ) ) ) |
| 21 |
20
|
rspcev |
|- ( ( 0h e. ~H /\ A. v e. ~H ( T ` v ) = ( v .ih 0h ) ) -> E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) ) |
| 22 |
3 17 21
|
sylancr |
|- ( ( _|_ ` ( null ` T ) ) = 0H -> E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) ) |
| 23 |
6
|
choccli |
|- ( _|_ ` ( null ` T ) ) e. CH |
| 24 |
23
|
chne0i |
|- ( ( _|_ ` ( null ` T ) ) =/= 0H <-> E. u e. ( _|_ ` ( null ` T ) ) u =/= 0h ) |
| 25 |
23
|
cheli |
|- ( u e. ( _|_ ` ( null ` T ) ) -> u e. ~H ) |
| 26 |
4
|
ffvelcdmi |
|- ( u e. ~H -> ( T ` u ) e. CC ) |
| 27 |
26
|
adantr |
|- ( ( u e. ~H /\ u =/= 0h ) -> ( T ` u ) e. CC ) |
| 28 |
|
hicl |
|- ( ( u e. ~H /\ u e. ~H ) -> ( u .ih u ) e. CC ) |
| 29 |
28
|
anidms |
|- ( u e. ~H -> ( u .ih u ) e. CC ) |
| 30 |
29
|
adantr |
|- ( ( u e. ~H /\ u =/= 0h ) -> ( u .ih u ) e. CC ) |
| 31 |
|
his6 |
|- ( u e. ~H -> ( ( u .ih u ) = 0 <-> u = 0h ) ) |
| 32 |
31
|
necon3bid |
|- ( u e. ~H -> ( ( u .ih u ) =/= 0 <-> u =/= 0h ) ) |
| 33 |
32
|
biimpar |
|- ( ( u e. ~H /\ u =/= 0h ) -> ( u .ih u ) =/= 0 ) |
| 34 |
27 30 33
|
divcld |
|- ( ( u e. ~H /\ u =/= 0h ) -> ( ( T ` u ) / ( u .ih u ) ) e. CC ) |
| 35 |
34
|
cjcld |
|- ( ( u e. ~H /\ u =/= 0h ) -> ( * ` ( ( T ` u ) / ( u .ih u ) ) ) e. CC ) |
| 36 |
|
simpl |
|- ( ( u e. ~H /\ u =/= 0h ) -> u e. ~H ) |
| 37 |
|
hvmulcl |
|- ( ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) e. CC /\ u e. ~H ) -> ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) e. ~H ) |
| 38 |
35 36 37
|
syl2anc |
|- ( ( u e. ~H /\ u =/= 0h ) -> ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) e. ~H ) |
| 39 |
38
|
adantll |
|- ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ u =/= 0h ) -> ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) e. ~H ) |
| 40 |
|
hvmulcl |
|- ( ( ( T ` u ) e. CC /\ v e. ~H ) -> ( ( T ` u ) .h v ) e. ~H ) |
| 41 |
26 40
|
sylan |
|- ( ( u e. ~H /\ v e. ~H ) -> ( ( T ` u ) .h v ) e. ~H ) |
| 42 |
4
|
ffvelcdmi |
|- ( v e. ~H -> ( T ` v ) e. CC ) |
| 43 |
|
hvmulcl |
|- ( ( ( T ` v ) e. CC /\ u e. ~H ) -> ( ( T ` v ) .h u ) e. ~H ) |
| 44 |
42 43
|
sylan |
|- ( ( v e. ~H /\ u e. ~H ) -> ( ( T ` v ) .h u ) e. ~H ) |
| 45 |
44
|
ancoms |
|- ( ( u e. ~H /\ v e. ~H ) -> ( ( T ` v ) .h u ) e. ~H ) |
| 46 |
|
simpl |
|- ( ( u e. ~H /\ v e. ~H ) -> u e. ~H ) |
| 47 |
|
his2sub |
|- ( ( ( ( T ` u ) .h v ) e. ~H /\ ( ( T ` v ) .h u ) e. ~H /\ u e. ~H ) -> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) .ih u ) = ( ( ( ( T ` u ) .h v ) .ih u ) - ( ( ( T ` v ) .h u ) .ih u ) ) ) |
| 48 |
41 45 46 47
|
syl3anc |
|- ( ( u e. ~H /\ v e. ~H ) -> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) .ih u ) = ( ( ( ( T ` u ) .h v ) .ih u ) - ( ( ( T ` v ) .h u ) .ih u ) ) ) |
| 49 |
26
|
adantr |
|- ( ( u e. ~H /\ v e. ~H ) -> ( T ` u ) e. CC ) |
| 50 |
|
simpr |
|- ( ( u e. ~H /\ v e. ~H ) -> v e. ~H ) |
| 51 |
|
ax-his3 |
|- ( ( ( T ` u ) e. CC /\ v e. ~H /\ u e. ~H ) -> ( ( ( T ` u ) .h v ) .ih u ) = ( ( T ` u ) x. ( v .ih u ) ) ) |
| 52 |
49 50 46 51
|
syl3anc |
|- ( ( u e. ~H /\ v e. ~H ) -> ( ( ( T ` u ) .h v ) .ih u ) = ( ( T ` u ) x. ( v .ih u ) ) ) |
| 53 |
42
|
adantl |
|- ( ( u e. ~H /\ v e. ~H ) -> ( T ` v ) e. CC ) |
| 54 |
|
ax-his3 |
|- ( ( ( T ` v ) e. CC /\ u e. ~H /\ u e. ~H ) -> ( ( ( T ` v ) .h u ) .ih u ) = ( ( T ` v ) x. ( u .ih u ) ) ) |
| 55 |
53 46 46 54
|
syl3anc |
|- ( ( u e. ~H /\ v e. ~H ) -> ( ( ( T ` v ) .h u ) .ih u ) = ( ( T ` v ) x. ( u .ih u ) ) ) |
| 56 |
52 55
|
oveq12d |
|- ( ( u e. ~H /\ v e. ~H ) -> ( ( ( ( T ` u ) .h v ) .ih u ) - ( ( ( T ` v ) .h u ) .ih u ) ) = ( ( ( T ` u ) x. ( v .ih u ) ) - ( ( T ` v ) x. ( u .ih u ) ) ) ) |
| 57 |
48 56
|
eqtr2d |
|- ( ( u e. ~H /\ v e. ~H ) -> ( ( ( T ` u ) x. ( v .ih u ) ) - ( ( T ` v ) x. ( u .ih u ) ) ) = ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) .ih u ) ) |
| 58 |
57
|
adantll |
|- ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ v e. ~H ) -> ( ( ( T ` u ) x. ( v .ih u ) ) - ( ( T ` v ) x. ( u .ih u ) ) ) = ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) .ih u ) ) |
| 59 |
|
hvsubcl |
|- ( ( ( ( T ` u ) .h v ) e. ~H /\ ( ( T ` v ) .h u ) e. ~H ) -> ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) e. ~H ) |
| 60 |
41 45 59
|
syl2anc |
|- ( ( u e. ~H /\ v e. ~H ) -> ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) e. ~H ) |
| 61 |
1
|
lnfnsubi |
|- ( ( ( ( T ` u ) .h v ) e. ~H /\ ( ( T ` v ) .h u ) e. ~H ) -> ( T ` ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) ) = ( ( T ` ( ( T ` u ) .h v ) ) - ( T ` ( ( T ` v ) .h u ) ) ) ) |
| 62 |
41 45 61
|
syl2anc |
|- ( ( u e. ~H /\ v e. ~H ) -> ( T ` ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) ) = ( ( T ` ( ( T ` u ) .h v ) ) - ( T ` ( ( T ` v ) .h u ) ) ) ) |
| 63 |
1
|
lnfnmuli |
|- ( ( ( T ` u ) e. CC /\ v e. ~H ) -> ( T ` ( ( T ` u ) .h v ) ) = ( ( T ` u ) x. ( T ` v ) ) ) |
| 64 |
26 63
|
sylan |
|- ( ( u e. ~H /\ v e. ~H ) -> ( T ` ( ( T ` u ) .h v ) ) = ( ( T ` u ) x. ( T ` v ) ) ) |
| 65 |
1
|
lnfnmuli |
|- ( ( ( T ` v ) e. CC /\ u e. ~H ) -> ( T ` ( ( T ` v ) .h u ) ) = ( ( T ` v ) x. ( T ` u ) ) ) |
| 66 |
|
mulcom |
|- ( ( ( T ` v ) e. CC /\ ( T ` u ) e. CC ) -> ( ( T ` v ) x. ( T ` u ) ) = ( ( T ` u ) x. ( T ` v ) ) ) |
| 67 |
26 66
|
sylan2 |
|- ( ( ( T ` v ) e. CC /\ u e. ~H ) -> ( ( T ` v ) x. ( T ` u ) ) = ( ( T ` u ) x. ( T ` v ) ) ) |
| 68 |
65 67
|
eqtrd |
|- ( ( ( T ` v ) e. CC /\ u e. ~H ) -> ( T ` ( ( T ` v ) .h u ) ) = ( ( T ` u ) x. ( T ` v ) ) ) |
| 69 |
42 68
|
sylan |
|- ( ( v e. ~H /\ u e. ~H ) -> ( T ` ( ( T ` v ) .h u ) ) = ( ( T ` u ) x. ( T ` v ) ) ) |
| 70 |
69
|
ancoms |
|- ( ( u e. ~H /\ v e. ~H ) -> ( T ` ( ( T ` v ) .h u ) ) = ( ( T ` u ) x. ( T ` v ) ) ) |
| 71 |
64 70
|
oveq12d |
|- ( ( u e. ~H /\ v e. ~H ) -> ( ( T ` ( ( T ` u ) .h v ) ) - ( T ` ( ( T ` v ) .h u ) ) ) = ( ( ( T ` u ) x. ( T ` v ) ) - ( ( T ` u ) x. ( T ` v ) ) ) ) |
| 72 |
|
mulcl |
|- ( ( ( T ` u ) e. CC /\ ( T ` v ) e. CC ) -> ( ( T ` u ) x. ( T ` v ) ) e. CC ) |
| 73 |
26 42 72
|
syl2an |
|- ( ( u e. ~H /\ v e. ~H ) -> ( ( T ` u ) x. ( T ` v ) ) e. CC ) |
| 74 |
73
|
subidd |
|- ( ( u e. ~H /\ v e. ~H ) -> ( ( ( T ` u ) x. ( T ` v ) ) - ( ( T ` u ) x. ( T ` v ) ) ) = 0 ) |
| 75 |
62 71 74
|
3eqtrd |
|- ( ( u e. ~H /\ v e. ~H ) -> ( T ` ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) ) = 0 ) |
| 76 |
|
elnlfn |
|- ( T : ~H --> CC -> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) e. ( null ` T ) <-> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) e. ~H /\ ( T ` ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) ) = 0 ) ) ) |
| 77 |
4 76
|
ax-mp |
|- ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) e. ( null ` T ) <-> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) e. ~H /\ ( T ` ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) ) = 0 ) ) |
| 78 |
60 75 77
|
sylanbrc |
|- ( ( u e. ~H /\ v e. ~H ) -> ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) e. ( null ` T ) ) |
| 79 |
6
|
chssii |
|- ( null ` T ) C_ ~H |
| 80 |
|
ocorth |
|- ( ( null ` T ) C_ ~H -> ( ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) e. ( null ` T ) /\ u e. ( _|_ ` ( null ` T ) ) ) -> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) .ih u ) = 0 ) ) |
| 81 |
79 80
|
ax-mp |
|- ( ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) e. ( null ` T ) /\ u e. ( _|_ ` ( null ` T ) ) ) -> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) .ih u ) = 0 ) |
| 82 |
78 81
|
sylan |
|- ( ( ( u e. ~H /\ v e. ~H ) /\ u e. ( _|_ ` ( null ` T ) ) ) -> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) .ih u ) = 0 ) |
| 83 |
82
|
ancoms |
|- ( ( u e. ( _|_ ` ( null ` T ) ) /\ ( u e. ~H /\ v e. ~H ) ) -> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) .ih u ) = 0 ) |
| 84 |
83
|
anassrs |
|- ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ v e. ~H ) -> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) .ih u ) = 0 ) |
| 85 |
58 84
|
eqtrd |
|- ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ v e. ~H ) -> ( ( ( T ` u ) x. ( v .ih u ) ) - ( ( T ` v ) x. ( u .ih u ) ) ) = 0 ) |
| 86 |
|
hicl |
|- ( ( v e. ~H /\ u e. ~H ) -> ( v .ih u ) e. CC ) |
| 87 |
86
|
ancoms |
|- ( ( u e. ~H /\ v e. ~H ) -> ( v .ih u ) e. CC ) |
| 88 |
49 87
|
mulcld |
|- ( ( u e. ~H /\ v e. ~H ) -> ( ( T ` u ) x. ( v .ih u ) ) e. CC ) |
| 89 |
|
mulcl |
|- ( ( ( T ` v ) e. CC /\ ( u .ih u ) e. CC ) -> ( ( T ` v ) x. ( u .ih u ) ) e. CC ) |
| 90 |
42 29 89
|
syl2anr |
|- ( ( u e. ~H /\ v e. ~H ) -> ( ( T ` v ) x. ( u .ih u ) ) e. CC ) |
| 91 |
88 90
|
subeq0ad |
|- ( ( u e. ~H /\ v e. ~H ) -> ( ( ( ( T ` u ) x. ( v .ih u ) ) - ( ( T ` v ) x. ( u .ih u ) ) ) = 0 <-> ( ( T ` u ) x. ( v .ih u ) ) = ( ( T ` v ) x. ( u .ih u ) ) ) ) |
| 92 |
91
|
adantll |
|- ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ v e. ~H ) -> ( ( ( ( T ` u ) x. ( v .ih u ) ) - ( ( T ` v ) x. ( u .ih u ) ) ) = 0 <-> ( ( T ` u ) x. ( v .ih u ) ) = ( ( T ` v ) x. ( u .ih u ) ) ) ) |
| 93 |
85 92
|
mpbid |
|- ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ v e. ~H ) -> ( ( T ` u ) x. ( v .ih u ) ) = ( ( T ` v ) x. ( u .ih u ) ) ) |
| 94 |
93
|
adantlr |
|- ( ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ u =/= 0h ) /\ v e. ~H ) -> ( ( T ` u ) x. ( v .ih u ) ) = ( ( T ` v ) x. ( u .ih u ) ) ) |
| 95 |
88
|
adantlr |
|- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( ( T ` u ) x. ( v .ih u ) ) e. CC ) |
| 96 |
42
|
adantl |
|- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( T ` v ) e. CC ) |
| 97 |
30 33
|
jca |
|- ( ( u e. ~H /\ u =/= 0h ) -> ( ( u .ih u ) e. CC /\ ( u .ih u ) =/= 0 ) ) |
| 98 |
97
|
adantr |
|- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( ( u .ih u ) e. CC /\ ( u .ih u ) =/= 0 ) ) |
| 99 |
|
divmul3 |
|- ( ( ( ( T ` u ) x. ( v .ih u ) ) e. CC /\ ( T ` v ) e. CC /\ ( ( u .ih u ) e. CC /\ ( u .ih u ) =/= 0 ) ) -> ( ( ( ( T ` u ) x. ( v .ih u ) ) / ( u .ih u ) ) = ( T ` v ) <-> ( ( T ` u ) x. ( v .ih u ) ) = ( ( T ` v ) x. ( u .ih u ) ) ) ) |
| 100 |
95 96 98 99
|
syl3anc |
|- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( ( ( ( T ` u ) x. ( v .ih u ) ) / ( u .ih u ) ) = ( T ` v ) <-> ( ( T ` u ) x. ( v .ih u ) ) = ( ( T ` v ) x. ( u .ih u ) ) ) ) |
| 101 |
100
|
adantlll |
|- ( ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ u =/= 0h ) /\ v e. ~H ) -> ( ( ( ( T ` u ) x. ( v .ih u ) ) / ( u .ih u ) ) = ( T ` v ) <-> ( ( T ` u ) x. ( v .ih u ) ) = ( ( T ` v ) x. ( u .ih u ) ) ) ) |
| 102 |
94 101
|
mpbird |
|- ( ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ u =/= 0h ) /\ v e. ~H ) -> ( ( ( T ` u ) x. ( v .ih u ) ) / ( u .ih u ) ) = ( T ` v ) ) |
| 103 |
27
|
adantr |
|- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( T ` u ) e. CC ) |
| 104 |
87
|
adantlr |
|- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( v .ih u ) e. CC ) |
| 105 |
|
div23 |
|- ( ( ( T ` u ) e. CC /\ ( v .ih u ) e. CC /\ ( ( u .ih u ) e. CC /\ ( u .ih u ) =/= 0 ) ) -> ( ( ( T ` u ) x. ( v .ih u ) ) / ( u .ih u ) ) = ( ( ( T ` u ) / ( u .ih u ) ) x. ( v .ih u ) ) ) |
| 106 |
103 104 98 105
|
syl3anc |
|- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( ( ( T ` u ) x. ( v .ih u ) ) / ( u .ih u ) ) = ( ( ( T ` u ) / ( u .ih u ) ) x. ( v .ih u ) ) ) |
| 107 |
34
|
adantr |
|- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( ( T ` u ) / ( u .ih u ) ) e. CC ) |
| 108 |
|
simpr |
|- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> v e. ~H ) |
| 109 |
|
simpll |
|- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> u e. ~H ) |
| 110 |
|
his52 |
|- ( ( ( ( T ` u ) / ( u .ih u ) ) e. CC /\ v e. ~H /\ u e. ~H ) -> ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) = ( ( ( T ` u ) / ( u .ih u ) ) x. ( v .ih u ) ) ) |
| 111 |
107 108 109 110
|
syl3anc |
|- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) = ( ( ( T ` u ) / ( u .ih u ) ) x. ( v .ih u ) ) ) |
| 112 |
106 111
|
eqtr4d |
|- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( ( ( T ` u ) x. ( v .ih u ) ) / ( u .ih u ) ) = ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) ) |
| 113 |
112
|
adantlll |
|- ( ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ u =/= 0h ) /\ v e. ~H ) -> ( ( ( T ` u ) x. ( v .ih u ) ) / ( u .ih u ) ) = ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) ) |
| 114 |
102 113
|
eqtr3d |
|- ( ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ u =/= 0h ) /\ v e. ~H ) -> ( T ` v ) = ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) ) |
| 115 |
114
|
ralrimiva |
|- ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ u =/= 0h ) -> A. v e. ~H ( T ` v ) = ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) ) |
| 116 |
|
oveq2 |
|- ( w = ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) -> ( v .ih w ) = ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) ) |
| 117 |
116
|
eqeq2d |
|- ( w = ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) -> ( ( T ` v ) = ( v .ih w ) <-> ( T ` v ) = ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) ) ) |
| 118 |
117
|
ralbidv |
|- ( w = ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) -> ( A. v e. ~H ( T ` v ) = ( v .ih w ) <-> A. v e. ~H ( T ` v ) = ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) ) ) |
| 119 |
118
|
rspcev |
|- ( ( ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) e. ~H /\ A. v e. ~H ( T ` v ) = ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) ) -> E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) ) |
| 120 |
39 115 119
|
syl2anc |
|- ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ u =/= 0h ) -> E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) ) |
| 121 |
120
|
ex |
|- ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) -> ( u =/= 0h -> E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) ) ) |
| 122 |
25 121
|
mpdan |
|- ( u e. ( _|_ ` ( null ` T ) ) -> ( u =/= 0h -> E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) ) ) |
| 123 |
122
|
rexlimiv |
|- ( E. u e. ( _|_ ` ( null ` T ) ) u =/= 0h -> E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) ) |
| 124 |
24 123
|
sylbi |
|- ( ( _|_ ` ( null ` T ) ) =/= 0H -> E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) ) |
| 125 |
22 124
|
pm2.61ine |
|- E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) |