| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq1 |  |-  ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( T ` v ) = ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` v ) ) | 
						
							| 2 | 1 | eqeq1d |  |-  ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( ( T ` v ) = ( v .ih w ) <-> ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` v ) = ( v .ih w ) ) ) | 
						
							| 3 | 2 | ralbidv |  |-  ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( A. v e. ~H ( T ` v ) = ( v .ih w ) <-> A. v e. ~H ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` v ) = ( v .ih w ) ) ) | 
						
							| 4 | 3 | reubidv |  |-  ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( E! w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) <-> E! w e. ~H A. v e. ~H ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` v ) = ( v .ih w ) ) ) | 
						
							| 5 |  | inss1 |  |-  ( LinFn i^i ContFn ) C_ LinFn | 
						
							| 6 |  | 0lnfn |  |-  ( ~H X. { 0 } ) e. LinFn | 
						
							| 7 |  | 0cnfn |  |-  ( ~H X. { 0 } ) e. ContFn | 
						
							| 8 |  | elin |  |-  ( ( ~H X. { 0 } ) e. ( LinFn i^i ContFn ) <-> ( ( ~H X. { 0 } ) e. LinFn /\ ( ~H X. { 0 } ) e. ContFn ) ) | 
						
							| 9 | 6 7 8 | mpbir2an |  |-  ( ~H X. { 0 } ) e. ( LinFn i^i ContFn ) | 
						
							| 10 | 9 | elimel |  |-  if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ( LinFn i^i ContFn ) | 
						
							| 11 | 5 10 | sselii |  |-  if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. LinFn | 
						
							| 12 |  | inss2 |  |-  ( LinFn i^i ContFn ) C_ ContFn | 
						
							| 13 | 12 10 | sselii |  |-  if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ContFn | 
						
							| 14 | 11 13 | riesz4i |  |-  E! w e. ~H A. v e. ~H ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` v ) = ( v .ih w ) | 
						
							| 15 | 4 14 | dedth |  |-  ( T e. ( LinFn i^i ContFn ) -> E! w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) ) |