Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
|- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( T ` v ) = ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` v ) ) |
2 |
1
|
eqeq1d |
|- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( ( T ` v ) = ( v .ih w ) <-> ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` v ) = ( v .ih w ) ) ) |
3 |
2
|
ralbidv |
|- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( A. v e. ~H ( T ` v ) = ( v .ih w ) <-> A. v e. ~H ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` v ) = ( v .ih w ) ) ) |
4 |
3
|
reubidv |
|- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( E! w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) <-> E! w e. ~H A. v e. ~H ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` v ) = ( v .ih w ) ) ) |
5 |
|
inss1 |
|- ( LinFn i^i ContFn ) C_ LinFn |
6 |
|
0lnfn |
|- ( ~H X. { 0 } ) e. LinFn |
7 |
|
0cnfn |
|- ( ~H X. { 0 } ) e. ContFn |
8 |
|
elin |
|- ( ( ~H X. { 0 } ) e. ( LinFn i^i ContFn ) <-> ( ( ~H X. { 0 } ) e. LinFn /\ ( ~H X. { 0 } ) e. ContFn ) ) |
9 |
6 7 8
|
mpbir2an |
|- ( ~H X. { 0 } ) e. ( LinFn i^i ContFn ) |
10 |
9
|
elimel |
|- if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ( LinFn i^i ContFn ) |
11 |
5 10
|
sselii |
|- if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. LinFn |
12 |
|
inss2 |
|- ( LinFn i^i ContFn ) C_ ContFn |
13 |
12 10
|
sselii |
|- if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ContFn |
14 |
11 13
|
riesz4i |
|- E! w e. ~H A. v e. ~H ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` v ) = ( v .ih w ) |
15 |
4 14
|
dedth |
|- ( T e. ( LinFn i^i ContFn ) -> E! w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) ) |