Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
2 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
3 |
1 2
|
rimrhm |
|- ( F e. ( R RingIso S ) -> F e. ( R RingHom S ) ) |
4 |
|
rhmghm |
|- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
5 |
3 4
|
syl |
|- ( F e. ( R RingIso S ) -> F e. ( R GrpHom S ) ) |
6 |
1 2
|
rimf1o |
|- ( F e. ( R RingIso S ) -> F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) |
7 |
1 2
|
isgim |
|- ( F e. ( R GrpIso S ) <-> ( F e. ( R GrpHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) |
8 |
5 6 7
|
sylanbrc |
|- ( F e. ( R RingIso S ) -> F e. ( R GrpIso S ) ) |