| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 2 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 3 |
1 2
|
isrim |
|- ( F e. ( R RingIso S ) <-> ( F e. ( R RingHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) |
| 4 |
|
rhmisrnghm |
|- ( F e. ( R RingHom S ) -> F e. ( R RngHom S ) ) |
| 5 |
4
|
anim1i |
|- ( ( F e. ( R RingHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) -> ( F e. ( R RngHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) |
| 6 |
3 5
|
sylbi |
|- ( F e. ( R RingIso S ) -> ( F e. ( R RngHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) |
| 7 |
|
rimrcl |
|- ( F e. ( R RingIso S ) -> ( R e. _V /\ S e. _V ) ) |
| 8 |
1 2
|
isrngim2 |
|- ( ( R e. _V /\ S e. _V ) -> ( F e. ( R RngIso S ) <-> ( F e. ( R RngHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) ) |
| 9 |
7 8
|
syl |
|- ( F e. ( R RingIso S ) -> ( F e. ( R RngIso S ) <-> ( F e. ( R RngHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) ) |
| 10 |
6 9
|
mpbird |
|- ( F e. ( R RingIso S ) -> F e. ( R RngIso S ) ) |