Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
2 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
3 |
1 2
|
isrim |
|- ( F e. ( R RingIso S ) <-> ( F e. ( R RingHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) |
4 |
|
rhmisrnghm |
|- ( F e. ( R RingHom S ) -> F e. ( R RngHom S ) ) |
5 |
4
|
anim1i |
|- ( ( F e. ( R RingHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) -> ( F e. ( R RngHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) |
6 |
3 5
|
sylbi |
|- ( F e. ( R RingIso S ) -> ( F e. ( R RngHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) |
7 |
|
rimrcl |
|- ( F e. ( R RingIso S ) -> ( R e. _V /\ S e. _V ) ) |
8 |
1 2
|
isrngim2 |
|- ( ( R e. _V /\ S e. _V ) -> ( F e. ( R RngIso S ) <-> ( F e. ( R RngHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) ) |
9 |
7 8
|
syl |
|- ( F e. ( R RingIso S ) -> ( F e. ( R RngIso S ) <-> ( F e. ( R RngHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) ) |
10 |
6 9
|
mpbird |
|- ( F e. ( R RingIso S ) -> F e. ( R RngIso S ) ) |