Description: A ring isomorphism is a homomorphism. Compare gimghm . (Contributed by AV, 22-Oct-2019) Remove hypotheses. (Revised by SN, 10-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rimrhm | |- ( F e. ( R RingIso S ) -> F e. ( R RingHom S ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isrim0 | |- ( F e. ( R RingIso S ) <-> ( F e. ( R RingHom S ) /\ `' F e. ( S RingHom R ) ) ) | |
| 2 | 1 | simplbi | |- ( F e. ( R RingIso S ) -> F e. ( R RingHom S ) ) |