| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ring1eq0.b |
|- B = ( Base ` R ) |
| 2 |
|
ring1eq0.u |
|- .1. = ( 1r ` R ) |
| 3 |
|
ring1eq0.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
simpr |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> .1. = .0. ) |
| 5 |
4
|
oveq1d |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .1. ( .r ` R ) X ) = ( .0. ( .r ` R ) X ) ) |
| 6 |
4
|
oveq1d |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .1. ( .r ` R ) Y ) = ( .0. ( .r ` R ) Y ) ) |
| 7 |
|
simpl1 |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> R e. Ring ) |
| 8 |
|
simpl2 |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> X e. B ) |
| 9 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 10 |
1 9 3
|
ringlz |
|- ( ( R e. Ring /\ X e. B ) -> ( .0. ( .r ` R ) X ) = .0. ) |
| 11 |
7 8 10
|
syl2anc |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .0. ( .r ` R ) X ) = .0. ) |
| 12 |
|
simpl3 |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> Y e. B ) |
| 13 |
1 9 3
|
ringlz |
|- ( ( R e. Ring /\ Y e. B ) -> ( .0. ( .r ` R ) Y ) = .0. ) |
| 14 |
7 12 13
|
syl2anc |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .0. ( .r ` R ) Y ) = .0. ) |
| 15 |
11 14
|
eqtr4d |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .0. ( .r ` R ) X ) = ( .0. ( .r ` R ) Y ) ) |
| 16 |
6 15
|
eqtr4d |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .1. ( .r ` R ) Y ) = ( .0. ( .r ` R ) X ) ) |
| 17 |
5 16
|
eqtr4d |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .1. ( .r ` R ) X ) = ( .1. ( .r ` R ) Y ) ) |
| 18 |
1 9 2
|
ringlidm |
|- ( ( R e. Ring /\ X e. B ) -> ( .1. ( .r ` R ) X ) = X ) |
| 19 |
7 8 18
|
syl2anc |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .1. ( .r ` R ) X ) = X ) |
| 20 |
1 9 2
|
ringlidm |
|- ( ( R e. Ring /\ Y e. B ) -> ( .1. ( .r ` R ) Y ) = Y ) |
| 21 |
7 12 20
|
syl2anc |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .1. ( .r ` R ) Y ) = Y ) |
| 22 |
17 19 21
|
3eqtr3d |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> X = Y ) |
| 23 |
22
|
ex |
|- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( .1. = .0. -> X = Y ) ) |