Step |
Hyp |
Ref |
Expression |
1 |
|
ring1eq0.b |
|- B = ( Base ` R ) |
2 |
|
ring1eq0.u |
|- .1. = ( 1r ` R ) |
3 |
|
ring1eq0.z |
|- .0. = ( 0g ` R ) |
4 |
|
simpr |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> .1. = .0. ) |
5 |
4
|
oveq1d |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .1. ( .r ` R ) X ) = ( .0. ( .r ` R ) X ) ) |
6 |
4
|
oveq1d |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .1. ( .r ` R ) Y ) = ( .0. ( .r ` R ) Y ) ) |
7 |
|
simpl1 |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> R e. Ring ) |
8 |
|
simpl2 |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> X e. B ) |
9 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
10 |
1 9 3
|
ringlz |
|- ( ( R e. Ring /\ X e. B ) -> ( .0. ( .r ` R ) X ) = .0. ) |
11 |
7 8 10
|
syl2anc |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .0. ( .r ` R ) X ) = .0. ) |
12 |
|
simpl3 |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> Y e. B ) |
13 |
1 9 3
|
ringlz |
|- ( ( R e. Ring /\ Y e. B ) -> ( .0. ( .r ` R ) Y ) = .0. ) |
14 |
7 12 13
|
syl2anc |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .0. ( .r ` R ) Y ) = .0. ) |
15 |
11 14
|
eqtr4d |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .0. ( .r ` R ) X ) = ( .0. ( .r ` R ) Y ) ) |
16 |
6 15
|
eqtr4d |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .1. ( .r ` R ) Y ) = ( .0. ( .r ` R ) X ) ) |
17 |
5 16
|
eqtr4d |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .1. ( .r ` R ) X ) = ( .1. ( .r ` R ) Y ) ) |
18 |
1 9 2
|
ringlidm |
|- ( ( R e. Ring /\ X e. B ) -> ( .1. ( .r ` R ) X ) = X ) |
19 |
7 8 18
|
syl2anc |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .1. ( .r ` R ) X ) = X ) |
20 |
1 9 2
|
ringlidm |
|- ( ( R e. Ring /\ Y e. B ) -> ( .1. ( .r ` R ) Y ) = Y ) |
21 |
7 12 20
|
syl2anc |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .1. ( .r ` R ) Y ) = Y ) |
22 |
17 19 21
|
3eqtr3d |
|- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> X = Y ) |
23 |
22
|
ex |
|- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( .1. = .0. -> X = Y ) ) |