Step |
Hyp |
Ref |
Expression |
1 |
|
ring1ne0.b |
|- B = ( Base ` R ) |
2 |
|
ring1ne0.u |
|- .1. = ( 1r ` R ) |
3 |
|
ring1ne0.z |
|- .0. = ( 0g ` R ) |
4 |
1
|
fvexi |
|- B e. _V |
5 |
|
hashgt12el |
|- ( ( B e. _V /\ 1 < ( # ` B ) ) -> E. x e. B E. y e. B x =/= y ) |
6 |
4 5
|
mpan |
|- ( 1 < ( # ` B ) -> E. x e. B E. y e. B x =/= y ) |
7 |
6
|
adantl |
|- ( ( R e. Ring /\ 1 < ( # ` B ) ) -> E. x e. B E. y e. B x =/= y ) |
8 |
1 2 3
|
ring1eq0 |
|- ( ( R e. Ring /\ x e. B /\ y e. B ) -> ( .1. = .0. -> x = y ) ) |
9 |
8
|
necon3d |
|- ( ( R e. Ring /\ x e. B /\ y e. B ) -> ( x =/= y -> .1. =/= .0. ) ) |
10 |
9
|
3expib |
|- ( R e. Ring -> ( ( x e. B /\ y e. B ) -> ( x =/= y -> .1. =/= .0. ) ) ) |
11 |
10
|
adantr |
|- ( ( R e. Ring /\ 1 < ( # ` B ) ) -> ( ( x e. B /\ y e. B ) -> ( x =/= y -> .1. =/= .0. ) ) ) |
12 |
11
|
com3l |
|- ( ( x e. B /\ y e. B ) -> ( x =/= y -> ( ( R e. Ring /\ 1 < ( # ` B ) ) -> .1. =/= .0. ) ) ) |
13 |
12
|
rexlimivv |
|- ( E. x e. B E. y e. B x =/= y -> ( ( R e. Ring /\ 1 < ( # ` B ) ) -> .1. =/= .0. ) ) |
14 |
7 13
|
mpcom |
|- ( ( R e. Ring /\ 1 < ( # ` B ) ) -> .1. =/= .0. ) |