Description: In a unitary ring, the ring unity is not a zero divisor. (Contributed by AV, 7-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringunitnzdiv.b | |- B = ( Base ` R ) |
|
ringunitnzdiv.z | |- .0. = ( 0g ` R ) |
||
ringunitnzdiv.t | |- .x. = ( .r ` R ) |
||
ringunitnzdiv.r | |- ( ph -> R e. Ring ) |
||
ringunitnzdiv.y | |- ( ph -> Y e. B ) |
||
ring1nzdiv.x | |- .1. = ( 1r ` R ) |
||
Assertion | ring1nzdiv | |- ( ph -> ( ( .1. .x. Y ) = .0. <-> Y = .0. ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringunitnzdiv.b | |- B = ( Base ` R ) |
|
2 | ringunitnzdiv.z | |- .0. = ( 0g ` R ) |
|
3 | ringunitnzdiv.t | |- .x. = ( .r ` R ) |
|
4 | ringunitnzdiv.r | |- ( ph -> R e. Ring ) |
|
5 | ringunitnzdiv.y | |- ( ph -> Y e. B ) |
|
6 | ring1nzdiv.x | |- .1. = ( 1r ` R ) |
|
7 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
8 | 7 6 | 1unit | |- ( R e. Ring -> .1. e. ( Unit ` R ) ) |
9 | 4 8 | syl | |- ( ph -> .1. e. ( Unit ` R ) ) |
10 | 1 2 3 4 5 9 | ringunitnzdiv | |- ( ph -> ( ( .1. .x. Y ) = .0. <-> Y = .0. ) ) |