Metamath Proof Explorer


Theorem ring1nzdiv

Description: In a unitary ring, the ring unity is not a zero divisor. (Contributed by AV, 7-Mar-2025)

Ref Expression
Hypotheses ringunitnzdiv.b
|- B = ( Base ` R )
ringunitnzdiv.z
|- .0. = ( 0g ` R )
ringunitnzdiv.t
|- .x. = ( .r ` R )
ringunitnzdiv.r
|- ( ph -> R e. Ring )
ringunitnzdiv.y
|- ( ph -> Y e. B )
ring1nzdiv.x
|- .1. = ( 1r ` R )
Assertion ring1nzdiv
|- ( ph -> ( ( .1. .x. Y ) = .0. <-> Y = .0. ) )

Proof

Step Hyp Ref Expression
1 ringunitnzdiv.b
 |-  B = ( Base ` R )
2 ringunitnzdiv.z
 |-  .0. = ( 0g ` R )
3 ringunitnzdiv.t
 |-  .x. = ( .r ` R )
4 ringunitnzdiv.r
 |-  ( ph -> R e. Ring )
5 ringunitnzdiv.y
 |-  ( ph -> Y e. B )
6 ring1nzdiv.x
 |-  .1. = ( 1r ` R )
7 eqid
 |-  ( Unit ` R ) = ( Unit ` R )
8 7 6 1unit
 |-  ( R e. Ring -> .1. e. ( Unit ` R ) )
9 4 8 syl
 |-  ( ph -> .1. e. ( Unit ` R ) )
10 1 2 3 4 5 9 ringunitnzdiv
 |-  ( ph -> ( ( .1. .x. Y ) = .0. <-> Y = .0. ) )