Description: Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringacl.b | |- B = ( Base ` R ) |
|
| ringacl.p | |- .+ = ( +g ` R ) |
||
| Assertion | ringacl | |- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringacl.b | |- B = ( Base ` R ) |
|
| 2 | ringacl.p | |- .+ = ( +g ` R ) |
|
| 3 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 4 | 1 2 | grpcl | |- ( ( R e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |
| 5 | 3 4 | syl3an1 | |- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |