Step |
Hyp |
Ref |
Expression |
1 |
|
ringadd2.b |
|- B = ( Base ` R ) |
2 |
|
ringadd2.p |
|- .+ = ( +g ` R ) |
3 |
|
ringadd2.t |
|- .x. = ( .r ` R ) |
4 |
1 3
|
ringid |
|- ( ( R e. Ring /\ X e. B ) -> E. x e. B ( ( x .x. X ) = X /\ ( X .x. x ) = X ) ) |
5 |
|
oveq12 |
|- ( ( ( x .x. X ) = X /\ ( x .x. X ) = X ) -> ( ( x .x. X ) .+ ( x .x. X ) ) = ( X .+ X ) ) |
6 |
5
|
anidms |
|- ( ( x .x. X ) = X -> ( ( x .x. X ) .+ ( x .x. X ) ) = ( X .+ X ) ) |
7 |
6
|
eqcomd |
|- ( ( x .x. X ) = X -> ( X .+ X ) = ( ( x .x. X ) .+ ( x .x. X ) ) ) |
8 |
|
simpll |
|- ( ( ( R e. Ring /\ X e. B ) /\ x e. B ) -> R e. Ring ) |
9 |
|
simpr |
|- ( ( ( R e. Ring /\ X e. B ) /\ x e. B ) -> x e. B ) |
10 |
|
simplr |
|- ( ( ( R e. Ring /\ X e. B ) /\ x e. B ) -> X e. B ) |
11 |
1 2 3
|
ringdir |
|- ( ( R e. Ring /\ ( x e. B /\ x e. B /\ X e. B ) ) -> ( ( x .+ x ) .x. X ) = ( ( x .x. X ) .+ ( x .x. X ) ) ) |
12 |
8 9 9 10 11
|
syl13anc |
|- ( ( ( R e. Ring /\ X e. B ) /\ x e. B ) -> ( ( x .+ x ) .x. X ) = ( ( x .x. X ) .+ ( x .x. X ) ) ) |
13 |
12
|
eqeq2d |
|- ( ( ( R e. Ring /\ X e. B ) /\ x e. B ) -> ( ( X .+ X ) = ( ( x .+ x ) .x. X ) <-> ( X .+ X ) = ( ( x .x. X ) .+ ( x .x. X ) ) ) ) |
14 |
7 13
|
syl5ibr |
|- ( ( ( R e. Ring /\ X e. B ) /\ x e. B ) -> ( ( x .x. X ) = X -> ( X .+ X ) = ( ( x .+ x ) .x. X ) ) ) |
15 |
14
|
adantrd |
|- ( ( ( R e. Ring /\ X e. B ) /\ x e. B ) -> ( ( ( x .x. X ) = X /\ ( X .x. x ) = X ) -> ( X .+ X ) = ( ( x .+ x ) .x. X ) ) ) |
16 |
15
|
reximdva |
|- ( ( R e. Ring /\ X e. B ) -> ( E. x e. B ( ( x .x. X ) = X /\ ( X .x. x ) = X ) -> E. x e. B ( X .+ X ) = ( ( x .+ x ) .x. X ) ) ) |
17 |
4 16
|
mpd |
|- ( ( R e. Ring /\ X e. B ) -> E. x e. B ( X .+ X ) = ( ( x .+ x ) .x. X ) ) |