Step |
Hyp |
Ref |
Expression |
1 |
|
ringadd2.b |
|- B = ( Base ` R ) |
2 |
|
ringadd2.p |
|- .+ = ( +g ` R ) |
3 |
|
ringadd2.t |
|- .x. = ( .r ` R ) |
4 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
5 |
1 4
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
6 |
5
|
adantr |
|- ( ( R e. Ring /\ X e. B ) -> ( 1r ` R ) e. B ) |
7 |
|
simpr |
|- ( ( ( R e. Ring /\ X e. B ) /\ x = ( 1r ` R ) ) -> x = ( 1r ` R ) ) |
8 |
7 7
|
oveq12d |
|- ( ( ( R e. Ring /\ X e. B ) /\ x = ( 1r ` R ) ) -> ( x .+ x ) = ( ( 1r ` R ) .+ ( 1r ` R ) ) ) |
9 |
8
|
oveq1d |
|- ( ( ( R e. Ring /\ X e. B ) /\ x = ( 1r ` R ) ) -> ( ( x .+ x ) .x. X ) = ( ( ( 1r ` R ) .+ ( 1r ` R ) ) .x. X ) ) |
10 |
9
|
eqeq2d |
|- ( ( ( R e. Ring /\ X e. B ) /\ x = ( 1r ` R ) ) -> ( ( X .+ X ) = ( ( x .+ x ) .x. X ) <-> ( X .+ X ) = ( ( ( 1r ` R ) .+ ( 1r ` R ) ) .x. X ) ) ) |
11 |
1 2 3 4
|
ringo2times |
|- ( ( R e. Ring /\ X e. B ) -> ( X .+ X ) = ( ( ( 1r ` R ) .+ ( 1r ` R ) ) .x. X ) ) |
12 |
6 10 11
|
rspcedvd |
|- ( ( R e. Ring /\ X e. B ) -> E. x e. B ( X .+ X ) = ( ( x .+ x ) .x. X ) ) |