| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringadd2.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | ringadd2.p |  |-  .+ = ( +g ` R ) | 
						
							| 3 |  | ringadd2.t |  |-  .x. = ( .r ` R ) | 
						
							| 4 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 5 | 1 4 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. B ) | 
						
							| 6 | 5 | adantr |  |-  ( ( R e. Ring /\ X e. B ) -> ( 1r ` R ) e. B ) | 
						
							| 7 |  | simpr |  |-  ( ( ( R e. Ring /\ X e. B ) /\ x = ( 1r ` R ) ) -> x = ( 1r ` R ) ) | 
						
							| 8 | 7 7 | oveq12d |  |-  ( ( ( R e. Ring /\ X e. B ) /\ x = ( 1r ` R ) ) -> ( x .+ x ) = ( ( 1r ` R ) .+ ( 1r ` R ) ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( ( ( R e. Ring /\ X e. B ) /\ x = ( 1r ` R ) ) -> ( ( x .+ x ) .x. X ) = ( ( ( 1r ` R ) .+ ( 1r ` R ) ) .x. X ) ) | 
						
							| 10 | 9 | eqeq2d |  |-  ( ( ( R e. Ring /\ X e. B ) /\ x = ( 1r ` R ) ) -> ( ( X .+ X ) = ( ( x .+ x ) .x. X ) <-> ( X .+ X ) = ( ( ( 1r ` R ) .+ ( 1r ` R ) ) .x. X ) ) ) | 
						
							| 11 | 1 2 3 4 | ringo2times |  |-  ( ( R e. Ring /\ X e. B ) -> ( X .+ X ) = ( ( ( 1r ` R ) .+ ( 1r ` R ) ) .x. X ) ) | 
						
							| 12 | 6 10 11 | rspcedvd |  |-  ( ( R e. Ring /\ X e. B ) -> E. x e. B ( X .+ X ) = ( ( x .+ x ) .x. X ) ) |