Description: Associative law for multiplication in a ring. (Contributed by SN, 14-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringassd.b | |- B = ( Base ` R ) | |
| ringassd.t | |- .x. = ( .r ` R ) | ||
| ringassd.r | |- ( ph -> R e. Ring ) | ||
| ringassd.x | |- ( ph -> X e. B ) | ||
| ringassd.y | |- ( ph -> Y e. B ) | ||
| ringassd.z | |- ( ph -> Z e. B ) | ||
| Assertion | ringassd | |- ( ph -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ringassd.b | |- B = ( Base ` R ) | |
| 2 | ringassd.t | |- .x. = ( .r ` R ) | |
| 3 | ringassd.r | |- ( ph -> R e. Ring ) | |
| 4 | ringassd.x | |- ( ph -> X e. B ) | |
| 5 | ringassd.y | |- ( ph -> Y e. B ) | |
| 6 | ringassd.z | |- ( ph -> Z e. B ) | |
| 7 | 1 2 | ringass | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) | 
| 8 | 3 4 5 6 7 | syl13anc | |- ( ph -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) |