| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringcbas.c |  |-  C = ( RingCat ` U ) | 
						
							| 2 |  | ringcbas.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | ringcbas.u |  |-  ( ph -> U e. V ) | 
						
							| 4 |  | eqidd |  |-  ( ph -> ( U i^i Ring ) = ( U i^i Ring ) ) | 
						
							| 5 |  | eqidd |  |-  ( ph -> ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) = ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) | 
						
							| 6 | 1 3 4 5 | ringcval |  |-  ( ph -> C = ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) ) | 
						
							| 7 | 6 | fveq2d |  |-  ( ph -> ( Base ` C ) = ( Base ` ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) ) ) | 
						
							| 8 | 2 | a1i |  |-  ( ph -> B = ( Base ` C ) ) | 
						
							| 9 |  | eqid |  |-  ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) = ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) | 
						
							| 10 |  | eqid |  |-  ( Base ` ( ExtStrCat ` U ) ) = ( Base ` ( ExtStrCat ` U ) ) | 
						
							| 11 |  | fvexd |  |-  ( ph -> ( ExtStrCat ` U ) e. _V ) | 
						
							| 12 | 4 5 | rhmresfn |  |-  ( ph -> ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) Fn ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) | 
						
							| 13 |  | inss1 |  |-  ( U i^i Ring ) C_ U | 
						
							| 14 |  | eqid |  |-  ( ExtStrCat ` U ) = ( ExtStrCat ` U ) | 
						
							| 15 | 14 3 | estrcbas |  |-  ( ph -> U = ( Base ` ( ExtStrCat ` U ) ) ) | 
						
							| 16 | 13 15 | sseqtrid |  |-  ( ph -> ( U i^i Ring ) C_ ( Base ` ( ExtStrCat ` U ) ) ) | 
						
							| 17 | 9 10 11 12 16 | rescbas |  |-  ( ph -> ( U i^i Ring ) = ( Base ` ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) ) ) | 
						
							| 18 | 7 8 17 | 3eqtr4d |  |-  ( ph -> B = ( U i^i Ring ) ) |