| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ringcbasbas.r | 
							 |-  C = ( RingCat ` U )  | 
						
						
							| 2 | 
							
								
							 | 
							ringcbasbas.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 3 | 
							
								
							 | 
							ringcbasbas.u | 
							 |-  ( ph -> U e. WUni )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							ringcbas | 
							 |-  ( ph -> B = ( U i^i Ring ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							eleq2d | 
							 |-  ( ph -> ( R e. B <-> R e. ( U i^i Ring ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							elin | 
							 |-  ( R e. ( U i^i Ring ) <-> ( R e. U /\ R e. Ring ) )  | 
						
						
							| 7 | 
							
								
							 | 
							baseid | 
							 |-  Base = Slot ( Base ` ndx )  | 
						
						
							| 8 | 
							
								
							 | 
							simpl | 
							 |-  ( ( U e. WUni /\ R e. U ) -> U e. WUni )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr | 
							 |-  ( ( U e. WUni /\ R e. U ) -> R e. U )  | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							wunstr | 
							 |-  ( ( U e. WUni /\ R e. U ) -> ( Base ` R ) e. U )  | 
						
						
							| 11 | 
							
								10
							 | 
							ex | 
							 |-  ( U e. WUni -> ( R e. U -> ( Base ` R ) e. U ) )  | 
						
						
							| 12 | 
							
								11 3
							 | 
							syl11 | 
							 |-  ( R e. U -> ( ph -> ( Base ` R ) e. U ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							 |-  ( ( R e. U /\ R e. Ring ) -> ( ph -> ( Base ` R ) e. U ) )  | 
						
						
							| 14 | 
							
								6 13
							 | 
							sylbi | 
							 |-  ( R e. ( U i^i Ring ) -> ( ph -> ( Base ` R ) e. U ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							com12 | 
							 |-  ( ph -> ( R e. ( U i^i Ring ) -> ( Base ` R ) e. U ) )  | 
						
						
							| 16 | 
							
								5 15
							 | 
							sylbid | 
							 |-  ( ph -> ( R e. B -> ( Base ` R ) e. U ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							imp | 
							 |-  ( ( ph /\ R e. B ) -> ( Base ` R ) e. U )  |