| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringccat.c |  |-  C = ( RingCat ` U ) | 
						
							| 2 |  | id |  |-  ( U e. V -> U e. V ) | 
						
							| 3 |  | eqidd |  |-  ( U e. V -> ( U i^i Ring ) = ( U i^i Ring ) ) | 
						
							| 4 |  | eqidd |  |-  ( U e. V -> ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) = ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) | 
						
							| 5 | 1 2 3 4 | ringcval |  |-  ( U e. V -> C = ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) ) | 
						
							| 6 |  | eqid |  |-  ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) = ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) | 
						
							| 7 |  | eqid |  |-  ( ExtStrCat ` U ) = ( ExtStrCat ` U ) | 
						
							| 8 |  | eqidd |  |-  ( U e. V -> ( Ring i^i U ) = ( Ring i^i U ) ) | 
						
							| 9 |  | incom |  |-  ( U i^i Ring ) = ( Ring i^i U ) | 
						
							| 10 | 9 | a1i |  |-  ( U e. V -> ( U i^i Ring ) = ( Ring i^i U ) ) | 
						
							| 11 | 10 | sqxpeqd |  |-  ( U e. V -> ( ( U i^i Ring ) X. ( U i^i Ring ) ) = ( ( Ring i^i U ) X. ( Ring i^i U ) ) ) | 
						
							| 12 | 11 | reseq2d |  |-  ( U e. V -> ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) = ( RingHom |` ( ( Ring i^i U ) X. ( Ring i^i U ) ) ) ) | 
						
							| 13 | 7 2 8 12 | rhmsubcsetc |  |-  ( U e. V -> ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) e. ( Subcat ` ( ExtStrCat ` U ) ) ) | 
						
							| 14 | 6 13 | subccat |  |-  ( U e. V -> ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) e. Cat ) | 
						
							| 15 | 5 14 | eqeltrd |  |-  ( U e. V -> C e. Cat ) |