| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringcco.c |
|- C = ( RingCat ` U ) |
| 2 |
|
ringcco.u |
|- ( ph -> U e. V ) |
| 3 |
|
ringcco.o |
|- .x. = ( comp ` C ) |
| 4 |
|
ringcco.x |
|- ( ph -> X e. U ) |
| 5 |
|
ringcco.y |
|- ( ph -> Y e. U ) |
| 6 |
|
ringcco.z |
|- ( ph -> Z e. U ) |
| 7 |
|
ringcco.f |
|- ( ph -> F : ( Base ` X ) --> ( Base ` Y ) ) |
| 8 |
|
ringcco.g |
|- ( ph -> G : ( Base ` Y ) --> ( Base ` Z ) ) |
| 9 |
1 2 3
|
ringccofval |
|- ( ph -> .x. = ( comp ` ( ExtStrCat ` U ) ) ) |
| 10 |
9
|
oveqd |
|- ( ph -> ( <. X , Y >. .x. Z ) = ( <. X , Y >. ( comp ` ( ExtStrCat ` U ) ) Z ) ) |
| 11 |
10
|
oveqd |
|- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G ( <. X , Y >. ( comp ` ( ExtStrCat ` U ) ) Z ) F ) ) |
| 12 |
|
eqid |
|- ( ExtStrCat ` U ) = ( ExtStrCat ` U ) |
| 13 |
|
eqid |
|- ( comp ` ( ExtStrCat ` U ) ) = ( comp ` ( ExtStrCat ` U ) ) |
| 14 |
|
eqid |
|- ( Base ` X ) = ( Base ` X ) |
| 15 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
| 16 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
| 17 |
12 2 13 4 5 6 14 15 16 7 8
|
estrcco |
|- ( ph -> ( G ( <. X , Y >. ( comp ` ( ExtStrCat ` U ) ) Z ) F ) = ( G o. F ) ) |
| 18 |
11 17
|
eqtrd |
|- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G o. F ) ) |