Description: Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcbas.c | |- C = ( RingCat ` U ) | |
| ringcbas.b | |- B = ( Base ` C ) | ||
| ringcbas.u | |- ( ph -> U e. V ) | ||
| ringchomfval.h | |- H = ( Hom ` C ) | ||
| ringchom.x | |- ( ph -> X e. B ) | ||
| ringchom.y | |- ( ph -> Y e. B ) | ||
| Assertion | ringchom | |- ( ph -> ( X H Y ) = ( X RingHom Y ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ringcbas.c | |- C = ( RingCat ` U ) | |
| 2 | ringcbas.b | |- B = ( Base ` C ) | |
| 3 | ringcbas.u | |- ( ph -> U e. V ) | |
| 4 | ringchomfval.h | |- H = ( Hom ` C ) | |
| 5 | ringchom.x | |- ( ph -> X e. B ) | |
| 6 | ringchom.y | |- ( ph -> Y e. B ) | |
| 7 | 1 2 3 4 | ringchomfval | |- ( ph -> H = ( RingHom |` ( B X. B ) ) ) | 
| 8 | 7 | oveqd | |- ( ph -> ( X H Y ) = ( X ( RingHom |` ( B X. B ) ) Y ) ) | 
| 9 | 5 6 | ovresd | |- ( ph -> ( X ( RingHom |` ( B X. B ) ) Y ) = ( X RingHom Y ) ) | 
| 10 | 8 9 | eqtrd | |- ( ph -> ( X H Y ) = ( X RingHom Y ) ) |