| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringcbas.c |  |-  C = ( RingCat ` U ) | 
						
							| 2 |  | ringcbas.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | ringcbas.u |  |-  ( ph -> U e. V ) | 
						
							| 4 |  | ringchomfval.h |  |-  H = ( Hom ` C ) | 
						
							| 5 | 1 2 3 | ringcbas |  |-  ( ph -> B = ( U i^i Ring ) ) | 
						
							| 6 |  | eqidd |  |-  ( ph -> ( RingHom |` ( B X. B ) ) = ( RingHom |` ( B X. B ) ) ) | 
						
							| 7 | 1 3 5 6 | ringcval |  |-  ( ph -> C = ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( B X. B ) ) ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( ph -> ( Hom ` C ) = ( Hom ` ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( B X. B ) ) ) ) ) | 
						
							| 9 | 4 8 | eqtrid |  |-  ( ph -> H = ( Hom ` ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( B X. B ) ) ) ) ) | 
						
							| 10 |  | eqid |  |-  ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( B X. B ) ) ) = ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( B X. B ) ) ) | 
						
							| 11 |  | eqid |  |-  ( Base ` ( ExtStrCat ` U ) ) = ( Base ` ( ExtStrCat ` U ) ) | 
						
							| 12 |  | fvexd |  |-  ( ph -> ( ExtStrCat ` U ) e. _V ) | 
						
							| 13 | 5 6 | rhmresfn |  |-  ( ph -> ( RingHom |` ( B X. B ) ) Fn ( B X. B ) ) | 
						
							| 14 |  | inss1 |  |-  ( U i^i Ring ) C_ U | 
						
							| 15 | 14 | a1i |  |-  ( ph -> ( U i^i Ring ) C_ U ) | 
						
							| 16 |  | eqid |  |-  ( ExtStrCat ` U ) = ( ExtStrCat ` U ) | 
						
							| 17 | 16 3 | estrcbas |  |-  ( ph -> U = ( Base ` ( ExtStrCat ` U ) ) ) | 
						
							| 18 | 17 | eqcomd |  |-  ( ph -> ( Base ` ( ExtStrCat ` U ) ) = U ) | 
						
							| 19 | 15 5 18 | 3sstr4d |  |-  ( ph -> B C_ ( Base ` ( ExtStrCat ` U ) ) ) | 
						
							| 20 | 10 11 12 13 19 | reschom |  |-  ( ph -> ( RingHom |` ( B X. B ) ) = ( Hom ` ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( B X. B ) ) ) ) ) | 
						
							| 21 | 9 20 | eqtr4d |  |-  ( ph -> H = ( RingHom |` ( B X. B ) ) ) |