| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringccat.c |  |-  C = ( RingCat ` U ) | 
						
							| 2 |  | ringcid.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | ringcid.o |  |-  .1. = ( Id ` C ) | 
						
							| 4 |  | ringcid.u |  |-  ( ph -> U e. V ) | 
						
							| 5 |  | ringcid.x |  |-  ( ph -> X e. B ) | 
						
							| 6 |  | ringcid.s |  |-  S = ( Base ` X ) | 
						
							| 7 |  | eqidd |  |-  ( ph -> ( U i^i Ring ) = ( U i^i Ring ) ) | 
						
							| 8 |  | eqidd |  |-  ( ph -> ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) = ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) | 
						
							| 9 | 1 4 7 8 | ringcval |  |-  ( ph -> C = ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( ph -> ( Id ` C ) = ( Id ` ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) ) ) | 
						
							| 11 | 3 10 | eqtrid |  |-  ( ph -> .1. = ( Id ` ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) ) ) | 
						
							| 12 | 11 | fveq1d |  |-  ( ph -> ( .1. ` X ) = ( ( Id ` ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) ) ` X ) ) | 
						
							| 13 |  | eqid |  |-  ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) = ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) | 
						
							| 14 |  | eqid |  |-  ( ExtStrCat ` U ) = ( ExtStrCat ` U ) | 
						
							| 15 |  | incom |  |-  ( U i^i Ring ) = ( Ring i^i U ) | 
						
							| 16 | 15 | a1i |  |-  ( ph -> ( U i^i Ring ) = ( Ring i^i U ) ) | 
						
							| 17 | 14 4 16 8 | rhmsubcsetc |  |-  ( ph -> ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) e. ( Subcat ` ( ExtStrCat ` U ) ) ) | 
						
							| 18 | 7 8 | rhmresfn |  |-  ( ph -> ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) Fn ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) | 
						
							| 19 |  | eqid |  |-  ( Id ` ( ExtStrCat ` U ) ) = ( Id ` ( ExtStrCat ` U ) ) | 
						
							| 20 | 1 2 4 | ringcbas |  |-  ( ph -> B = ( U i^i Ring ) ) | 
						
							| 21 | 20 | eleq2d |  |-  ( ph -> ( X e. B <-> X e. ( U i^i Ring ) ) ) | 
						
							| 22 | 5 21 | mpbid |  |-  ( ph -> X e. ( U i^i Ring ) ) | 
						
							| 23 | 13 17 18 19 22 | subcid |  |-  ( ph -> ( ( Id ` ( ExtStrCat ` U ) ) ` X ) = ( ( Id ` ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) ) ` X ) ) | 
						
							| 24 |  | elinel1 |  |-  ( X e. ( U i^i Ring ) -> X e. U ) | 
						
							| 25 | 21 24 | biimtrdi |  |-  ( ph -> ( X e. B -> X e. U ) ) | 
						
							| 26 | 5 25 | mpd |  |-  ( ph -> X e. U ) | 
						
							| 27 | 14 19 4 26 | estrcid |  |-  ( ph -> ( ( Id ` ( ExtStrCat ` U ) ) ` X ) = ( _I |` ( Base ` X ) ) ) | 
						
							| 28 | 6 | eqcomi |  |-  ( Base ` X ) = S | 
						
							| 29 | 28 | a1i |  |-  ( ph -> ( Base ` X ) = S ) | 
						
							| 30 | 29 | reseq2d |  |-  ( ph -> ( _I |` ( Base ` X ) ) = ( _I |` S ) ) | 
						
							| 31 | 27 30 | eqtrd |  |-  ( ph -> ( ( Id ` ( ExtStrCat ` U ) ) ` X ) = ( _I |` S ) ) | 
						
							| 32 | 12 23 31 | 3eqtr2d |  |-  ( ph -> ( .1. ` X ) = ( _I |` S ) ) |