| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringcval.c |  |-  C = ( RingCat ` U ) | 
						
							| 2 |  | ringcval.u |  |-  ( ph -> U e. V ) | 
						
							| 3 |  | ringcval.b |  |-  ( ph -> B = ( U i^i Ring ) ) | 
						
							| 4 |  | ringcval.h |  |-  ( ph -> H = ( RingHom |` ( B X. B ) ) ) | 
						
							| 5 |  | df-ringc |  |-  RingCat = ( u e. _V |-> ( ( ExtStrCat ` u ) |`cat ( RingHom |` ( ( u i^i Ring ) X. ( u i^i Ring ) ) ) ) ) | 
						
							| 6 |  | fveq2 |  |-  ( u = U -> ( ExtStrCat ` u ) = ( ExtStrCat ` U ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ph /\ u = U ) -> ( ExtStrCat ` u ) = ( ExtStrCat ` U ) ) | 
						
							| 8 |  | ineq1 |  |-  ( u = U -> ( u i^i Ring ) = ( U i^i Ring ) ) | 
						
							| 9 | 8 | sqxpeqd |  |-  ( u = U -> ( ( u i^i Ring ) X. ( u i^i Ring ) ) = ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) | 
						
							| 10 | 3 | sqxpeqd |  |-  ( ph -> ( B X. B ) = ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) | 
						
							| 11 | 10 | eqcomd |  |-  ( ph -> ( ( U i^i Ring ) X. ( U i^i Ring ) ) = ( B X. B ) ) | 
						
							| 12 | 9 11 | sylan9eqr |  |-  ( ( ph /\ u = U ) -> ( ( u i^i Ring ) X. ( u i^i Ring ) ) = ( B X. B ) ) | 
						
							| 13 | 12 | reseq2d |  |-  ( ( ph /\ u = U ) -> ( RingHom |` ( ( u i^i Ring ) X. ( u i^i Ring ) ) ) = ( RingHom |` ( B X. B ) ) ) | 
						
							| 14 | 4 | eqcomd |  |-  ( ph -> ( RingHom |` ( B X. B ) ) = H ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ph /\ u = U ) -> ( RingHom |` ( B X. B ) ) = H ) | 
						
							| 16 | 13 15 | eqtrd |  |-  ( ( ph /\ u = U ) -> ( RingHom |` ( ( u i^i Ring ) X. ( u i^i Ring ) ) ) = H ) | 
						
							| 17 | 7 16 | oveq12d |  |-  ( ( ph /\ u = U ) -> ( ( ExtStrCat ` u ) |`cat ( RingHom |` ( ( u i^i Ring ) X. ( u i^i Ring ) ) ) ) = ( ( ExtStrCat ` U ) |`cat H ) ) | 
						
							| 18 | 2 | elexd |  |-  ( ph -> U e. _V ) | 
						
							| 19 |  | ovexd |  |-  ( ph -> ( ( ExtStrCat ` U ) |`cat H ) e. _V ) | 
						
							| 20 | 5 17 18 19 | fvmptd2 |  |-  ( ph -> ( RingCat ` U ) = ( ( ExtStrCat ` U ) |`cat H ) ) | 
						
							| 21 | 1 20 | eqtrid |  |-  ( ph -> C = ( ( ExtStrCat ` U ) |`cat H ) ) |