Metamath Proof Explorer


Theorem ringdird

Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses ringdid.b
|- B = ( Base ` R )
ringdid.p
|- .+ = ( +g ` R )
ringdid.m
|- .x. = ( .r ` R )
ringdid.r
|- ( ph -> R e. Ring )
ringdid.x
|- ( ph -> X e. B )
ringdid.y
|- ( ph -> Y e. B )
ringdid.z
|- ( ph -> Z e. B )
Assertion ringdird
|- ( ph -> ( ( X .+ Y ) .x. Z ) = ( ( X .x. Z ) .+ ( Y .x. Z ) ) )

Proof

Step Hyp Ref Expression
1 ringdid.b
 |-  B = ( Base ` R )
2 ringdid.p
 |-  .+ = ( +g ` R )
3 ringdid.m
 |-  .x. = ( .r ` R )
4 ringdid.r
 |-  ( ph -> R e. Ring )
5 ringdid.x
 |-  ( ph -> X e. B )
6 ringdid.y
 |-  ( ph -> Y e. B )
7 ringdid.z
 |-  ( ph -> Z e. B )
8 1 2 3 ringdir
 |-  ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .x. Z ) = ( ( X .x. Z ) .+ ( Y .x. Z ) ) )
9 4 5 6 7 8 syl13anc
 |-  ( ph -> ( ( X .+ Y ) .x. Z ) = ( ( X .x. Z ) .+ ( Y .x. Z ) ) )