Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Thierry Arnoux, 4-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringdid.b | |- B = ( Base ` R ) |
|
ringdid.p | |- .+ = ( +g ` R ) |
||
ringdid.m | |- .x. = ( .r ` R ) |
||
ringdid.r | |- ( ph -> R e. Ring ) |
||
ringdid.x | |- ( ph -> X e. B ) |
||
ringdid.y | |- ( ph -> Y e. B ) |
||
ringdid.z | |- ( ph -> Z e. B ) |
||
Assertion | ringdird | |- ( ph -> ( ( X .+ Y ) .x. Z ) = ( ( X .x. Z ) .+ ( Y .x. Z ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringdid.b | |- B = ( Base ` R ) |
|
2 | ringdid.p | |- .+ = ( +g ` R ) |
|
3 | ringdid.m | |- .x. = ( .r ` R ) |
|
4 | ringdid.r | |- ( ph -> R e. Ring ) |
|
5 | ringdid.x | |- ( ph -> X e. B ) |
|
6 | ringdid.y | |- ( ph -> Y e. B ) |
|
7 | ringdid.z | |- ( ph -> Z e. B ) |
|
8 | 1 2 3 | ringdir | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .x. Z ) = ( ( X .x. Z ) .+ ( Y .x. Z ) ) ) |
9 | 4 5 6 7 8 | syl13anc | |- ( ph -> ( ( X .+ Y ) .x. Z ) = ( ( X .x. Z ) .+ ( Y .x. Z ) ) ) |